Suppr超能文献

中向蛋白质组学中的代谢标记可用于研究组蛋白密码的动态变化。

Metabolic labeling in middle-down proteomics allows for investigation of the dynamics of the histone code.

作者信息

Sidoli Simone, Lu Congcong, Coradin Mariel, Wang Xiaoshi, Karch Kelly R, Ruminowicz Chrystian, Garcia Benjamin A

机构信息

Department of Biochemistry and Biophysics, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Room 9-124, 3400 Civic Center Blvd, Bldg 421, Philadelphia, PA, 19104, USA.

, Białystok, Poland.

出版信息

Epigenetics Chromatin. 2017 Jul 6;10(1):34. doi: 10.1186/s13072-017-0139-z.

Abstract

BACKGROUND

Middle-down mass spectrometry (MS), i.e., analysis of long (~50-60 aa) polypeptides, has become the method with the highest throughput and accuracy for the characterization of combinatorial histone posttranslational modifications (PTMs). The discovery of histone readers with multiple domains, and overall the cross talk of PTMs that decorate histone proteins, has revealed that histone marks have synergistic roles in modulating enzyme recruitment and subsequent chromatin activities. Here, we demonstrate that the middle-down MS strategy can be combined with metabolic labeling for enhanced quantification of histone proteins and their combinatorial PTMs in a dynamic manner.

METHODS

We used a nanoHPLC-MS/MS system consisting of hybrid weak cation exchange-hydrophilic interaction chromatography combined with high resolution MS and MS/MS with ETD fragmentation. After spectra identification, we filtered confident hits and quantified polypeptides using our in-house software isoScale.

RESULTS

We first verified that middle-down MS can discriminate and differentially quantify unlabeled from heavy labeled histone N-terminal tails (heavy lysine and arginine residues). Results revealed no bias toward identifying and quantifying unlabeled versus heavy labeled tails, even if the heavy labeled peptides presented the typical skewed isotopic pattern typical of long protein sequences that hardly get 100% labeling. Next, we plated epithelial cells into a media with heavy methionine-(methyl-CD), the precursor of the methyl donor S-adenosylmethionine and stimulated epithelial to mesenchymal transition (EMT). We assessed that results were reproducible across biological replicates and with data obtained using the more widely adopted bottom-up MS strategy, i.e., analysis of short tryptic peptides. We found remarkable differences in the incorporation rate of methylations in non-confluent cells versus confluent cells. Moreover, we showed that H3K27me3 was a critical player during the EMT process, as a consistent portion of histones modified as H3K27me2K36me2 in epithelial cells were converted into H3K27me3K36me2 in mesenchymal cells.

CONCLUSIONS

We demonstrate that middle-down MS, despite being a more scarcely exploited MS technique than bottom-up, is a robust quantitative method for histone PTM characterization. In particular, middle-down MS combined with metabolic labeling is currently the only methodology available for investigating turnover of combinatorial histone PTMs in dynamic systems.

摘要

背景

中向下质谱法(MS),即对长约50 - 60个氨基酸的多肽进行分析,已成为表征组合性组蛋白翻译后修饰(PTM)通量最高且准确性最高的方法。具有多个结构域的组蛋白阅读器的发现,以及修饰组蛋白的PTM之间的整体相互作用,表明组蛋白标记在调节酶招募和随后的染色质活性中具有协同作用。在此,我们证明中向下MS策略可与代谢标记相结合,以动态方式增强对组蛋白及其组合PTM的定量分析。

方法

我们使用了一种纳升液相色谱-串联质谱系统,该系统由混合弱阳离子交换-亲水相互作用色谱与高分辨率MS和采用电子转移解离(ETD)碎裂的串联质谱联用组成。在进行谱图鉴定后,我们使用内部软件isoScale筛选可靠的匹配并对多肽进行定量分析。

结果

我们首先验证了中向下MS能够区分并差异定量未标记和重标记的组蛋白N端尾部(赖氨酸和精氨酸残基被重标记)。结果表明,即使重标记肽呈现出典型的长蛋白序列特有的同位素峰形偏倚(很难实现100%标记),在鉴定和定量未标记与重标记尾部方面也不存在偏差。接下来,我们将上皮细胞接种到含有重蛋氨酸-(甲基- CD)(甲基供体S - 腺苷甲硫氨酸的前体)的培养基中,并刺激上皮-间质转化(EMT)。我们评估了不同生物学重复实验结果的可重复性,以及与采用更广泛的自下而上MS策略(即分析短的胰蛋白酶肽段)所获得数据的一致性。我们发现非汇合细胞与汇合细胞中甲基化的掺入率存在显著差异。此外,我们表明H3K27me3在EMT过程中起着关键作用,因为上皮细胞中被修饰为H3K27me2K36me2的组蛋白中有相当一部分在间质细胞中转化为了H3K27me3K36me2。

结论

我们证明,尽管中向下MS是一种比自下而上使用较少的MS技术,但它是一种用于组蛋白PTM表征的强大定量方法。特别是,中向下MS结合代谢标记目前是研究动态系统中组合性组蛋白PTM周转的唯一可用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/afde/5501349/c9bd9848110a/13072_2017_139_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验