Suppr超能文献

赤道热量积累作为新生代永久南极冰盖的长期触发因素。

Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic.

作者信息

Tremblin Maxime, Hermoso Michaël, Minoletti Fabrice

机构信息

Institut des Sciences de la Terre de Paris (UMR UPMC/CNRS 7193 ISTeP), Université Pierre et Marie Curie, CNRS, Sorbonne Universités, 75252 Paris Cedex 05, France.

Department of Earth Sciences, University of Oxford, Oxford OX1 3AN, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11782-11787. doi: 10.1073/pnas.1608100113. Epub 2016 Oct 3.

Abstract

Growth of the first permanent Antarctic ice sheets at the Eocene-Oligocene Transition (EOT), ∼33.7 million years ago, indicates a major climate shift within long-term Cenozoic cooling. The driving mechanisms that set the stage for this glaciation event are not well constrained, however, owing to large uncertainties in temperature reconstructions during the Eocene, especially at lower latitudes. To address this deficiency, we used recent developments in coccolith biogeochemistry to reconstruct equatorial Atlantic sea surface temperature (SST) and atmospheric pCO values from pelagic sequences preceding and spanning the EOT. We found significantly more variability in equatorial SSTs than previously reported, with pronounced cooling from the Early to Middle Eocene and subsequent warming during the Late Eocene. Thus, we show that the Antarctic glaciation at the Eocene-Oligocene boundary was preceded by a period of heat accumulation in the low latitudes, likely focused in a progressively contracting South Atlantic gyre, which contributed to cooling high-latitude austral regions. This prominent redistribution of heat corresponds to the emplacement of a strong meridional temperature gradient that typifies icehouse climate conditions. Our equatorial coccolith-derived geochemical record thus highlights an important period of global climatic and oceanic upheaval, which began 4 million years before the EOT and, superimposed on a long-term pCO decline, drove the Earth system toward a glacial tipping point in the Cenozoic.

摘要

约3370万年前始新世-渐新世过渡(EOT)时期,首个永久性南极冰盖的形成,标志着长期新生代变冷过程中的一次重大气候变化。然而,由于始新世期间温度重建存在很大不确定性,尤其是在低纬度地区,导致引发这次冰川作用事件的驱动机制尚未得到充分限制。为解决这一不足,我们利用了颗石藻生物地球化学的最新进展,从早于和跨越EOT的远洋层序中重建赤道大西洋海表温度(SST)和大气pCO₂值。我们发现赤道海表温度的变率比之前报道的要大得多,从早始新世到中始新世有明显降温,随后在晚始新世变暖。因此,我们表明,始新世-渐新世边界的南极冰川作用之前,低纬度地区有一段热量积累期,可能集中在逐渐收缩的南大西洋环流中,这导致了高纬度南极地区的降温。这种显著的热量重新分布对应着一个典型冰室气候条件的强经向温度梯度的形成。因此,我们基于赤道颗石藻的地球化学记录突出了一个全球气候和海洋动荡的重要时期,这个时期在EOT之前400万年开始,叠加在长期pCO₂下降的趋势上,推动地球系统在新生代走向冰川临界点。

相似文献

1
Equatorial heat accumulation as a long-term trigger of permanent Antarctic ice sheets during the Cenozoic.
Proc Natl Acad Sci U S A. 2016 Oct 18;113(42):11782-11787. doi: 10.1073/pnas.1608100113. Epub 2016 Oct 3.
3
The enigma of Oligocene climate and global surface temperature evolution.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25302-25309. doi: 10.1073/pnas.2003914117. Epub 2020 Sep 28.
4
A 40-million-year history of atmospheric CO(2).
Philos Trans A Math Phys Eng Sci. 2013 Sep 16;371(2001):20130096. doi: 10.1098/rsta.2013.0096. Print 2013 Oct 28.
5
Terrestrial cooling in Northern Europe during the eocene-oligocene transition.
Proc Natl Acad Sci U S A. 2013 May 7;110(19):7562-7. doi: 10.1073/pnas.1210930110. Epub 2013 Apr 22.
6
Early Palaeogene temperature evolution of the southwest Pacific Ocean.
Nature. 2009 Oct 8;461(7265):776-9. doi: 10.1038/nature08399.
7
Thresholds for Cenozoic bipolar glaciation.
Nature. 2008 Oct 2;455(7213):652-6. doi: 10.1038/nature07337.
8
Atmospheric and oceanic impacts of Antarctic glaciation across the Eocene-Oligocene transition.
Philos Trans A Math Phys Eng Sci. 2015 Nov 13;373(2054). doi: 10.1098/rsta.2014.0419.
10
Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.
Nature. 2016 May 19;533(7603):380-4. doi: 10.1038/nature17423. Epub 2016 Apr 25.

引用本文的文献

1
2
The enigma of Oligocene climate and global surface temperature evolution.
Proc Natl Acad Sci U S A. 2020 Oct 13;117(41):25302-25309. doi: 10.1073/pnas.2003914117. Epub 2020 Sep 28.
3
Wet tropical climate in SE Tibet during the Late Eocene.
Sci Rep. 2017 Aug 10;7(1):7809. doi: 10.1038/s41598-017-07766-9.

本文引用的文献

1
Changing atmospheric CO2 concentration was the primary driver of early Cenozoic climate.
Nature. 2016 May 19;533(7603):380-4. doi: 10.1038/nature17423. Epub 2016 Apr 25.
2
Numerical cell model investigating cellular carbon fluxes in Emiliania huxleyi.
J Theor Biol. 2015 Jan 7;364:305-15. doi: 10.1016/j.jtbi.2014.08.040. Epub 2014 Sep 16.
3
A 40-million-year history of atmospheric CO(2).
Philos Trans A Math Phys Eng Sci. 2013 Sep 16;371(2001):20130096. doi: 10.1098/rsta.2013.0096. Print 2013 Oct 28.
4
Late Miocene threshold response of marine algae to carbon dioxide limitation.
Nature. 2013 Aug 29;500(7464):558-62. doi: 10.1038/nature12448.
5
State-dependent climate sensitivity in past warm climates and its implications for future climate projections.
Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14162-7. doi: 10.1073/pnas.1303365110. Epub 2013 Aug 5.
6
Eocene cooling linked to early flow across the Tasmanian Gateway.
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9645-50. doi: 10.1073/pnas.1220872110. Epub 2013 May 29.
7
The geological record of ocean acidification.
Science. 2012 Mar 2;335(6072):1058-63. doi: 10.1126/science.1208277.
8
The role of carbon dioxide during the onset of Antarctic glaciation.
Science. 2011 Dec 2;334(6060):1261-4. doi: 10.1126/science.1203909.
9
Atmospheric carbon dioxide through the Eocene-Oligocene climate transition.
Nature. 2009 Oct 22;461(7267):1110-3. doi: 10.1038/nature08447. Epub 2009 Sep 13.
10
Global cooling during the eocene-oligocene climate transition.
Science. 2009 Feb 27;323(5918):1187-90. doi: 10.1126/science.1166368.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验