Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK.
School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3AT, UK.
Nature. 2016 May 19;533(7603):380-4. doi: 10.1038/nature17423. Epub 2016 Apr 25.
The Early Eocene Climate Optimum (EECO, which occurred about 51 to 53 million years ago), was the warmest interval of the past 65 million years, with mean annual surface air temperature over ten degrees Celsius warmer than during the pre-industrial period. Subsequent global cooling in the middle and late Eocene epoch, especially at high latitudes, eventually led to continental ice sheet development in Antarctica in the early Oligocene epoch (about 33.6 million years ago). However, existing estimates place atmospheric carbon dioxide (CO2) levels during the Eocene at 500-3,000 parts per million, and in the absence of tighter constraints carbon-climate interactions over this interval remain uncertain. Here we use recent analytical and methodological developments to generate a new high-fidelity record of CO2 concentrations using the boron isotope (δ(11)B) composition of well preserved planktonic foraminifera from the Tanzania Drilling Project, revising previous estimates. Although species-level uncertainties make absolute values difficult to constrain, CO2 concentrations during the EECO were around 1,400 parts per million. The relative decline in CO2 concentration through the Eocene is more robustly constrained at about fifty per cent, with a further decline into the Oligocene. Provided the latitudinal dependency of sea surface temperature change for a given climate forcing in the Eocene was similar to that of the late Quaternary period, this CO2 decline was sufficient to drive the well documented high- and low-latitude cooling that occurred through the Eocene. Once the change in global temperature between the pre-industrial period and the Eocene caused by the action of all known slow feedbacks (apart from those associated with the carbon cycle) is removed, both the EECO and the late Eocene exhibit an equilibrium climate sensitivity relative to the pre-industrial period of 2.1 to 4.6 degrees Celsius per CO2 doubling (66 per cent confidence), which is similar to the canonical range (1.5 to 4.5 degrees Celsius), indicating that a large fraction of the warmth of the early Eocene greenhouse was driven by increased CO2 concentrations, and that climate sensitivity was relatively constant throughout this period.
始新世气候极盛期(EECO,发生在大约 5100 万至 5300 万年前)是过去 6500 万年中最温暖的时期,年平均地表气温比工业化前高出 10 摄氏度以上。随后,中始新世和晚始新世的全球冷却,特别是在高纬度地区,最终导致了南极洲在早渐新世(约 3360 万年前)形成大陆冰盖。然而,现有的估计表明,始新世时期的大气二氧化碳(CO2)水平在 500-3000 ppm 之间,在缺乏更严格限制的情况下,这一时期的碳-气候相互作用仍不确定。在这里,我们使用最近的分析和方法学进展,利用坦桑尼亚钻井项目中保存完好的浮游有孔虫的硼同位素(δ(11)B)组成,生成了一个新的高精度 CO2 浓度记录,对以前的估计进行了修正。尽管种属水平的不确定性使得绝对数值难以确定,但 EECO 时期的 CO2 浓度约为 1400ppm。通过始新世,CO2 浓度相对下降的幅度更稳健地被约束在 50%左右,进一步下降到渐新世。假设在始新世,给定气候强迫下的海表面温度变化的纬度依赖性与晚第四纪时期相似,那么这种 CO2 下降足以驱动整个始新世时期发生的高纬度和低纬度冷却,这一点已得到充分记录。一旦除去由所有已知的慢反馈(除了与碳循环相关的反馈)引起的工业化前时期和始新世之间全球温度变化的影响,EECO 和晚始新世都表现出相对于工业化前时期的平衡气候敏感性为 2.1 到 4.6 摄氏度/CO2 加倍(66%置信度),这与典型范围(1.5 到 4.5 摄氏度)相似,表明早期始新世温室的大部分温暖是由 CO2 浓度增加驱动的,并且在整个时期气候敏感性相对稳定。