Almeida Bethany, Shukla Anita
School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island.
J Biomed Mater Res A. 2017 Feb;105(2):464-474. doi: 10.1002/jbm.a.35922. Epub 2016 Oct 31.
Alkanethiol self-assembled monolayers (SAMs) have been used extensively in studying the role of surface functionality and geometry on stem cell differentiation; however, the effects of stem cell culture conditions on SAM stability over time are not well understood. In this work, we examined the physical and chemical changes occurring on gold (Au)-SAM surfaces over time as a function of Au thickness. Within a narrow range of thicknesses (4, 8, and 10 nm), we observed significant differences in temporal SAM stability for a commonly utilized, hydrophilic, protein and cell repulsive oligo(ethylene) glycol alkanethiol (HS-(CH ) (O(CH ) ) OH) SAM and the hydrophobic, protein adhesive hexadecanethiol (SH-(CH ) CH ) SAM. Within both acellular and stem cell culture conditions, 8 nm Au resulted in the most stable SAMs (∼7 days). The 4 and 10 nm Au SAMs exhibited loss in stability following 5 days at varying degradation rates, showing 4 nm Au to be the least stable. Migration of human mesenchymal stem cells seeded on SAM surfaces showed that SAM degradation rates in acellular conditions were directly correlated with the cellular migration behavior. Findings of this study can be used to develop SAM surfaces with controlled degradation rates for applications in stem cell engineering and regenerative medicine. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 464-474, 2017.
烷硫醇自组装单分子层(SAMs)已被广泛用于研究表面功能和几何形状对干细胞分化的作用;然而,干细胞培养条件对SAM随时间稳定性的影响尚未得到充分了解。在这项工作中,我们研究了金(Au)-SAM表面随时间发生的物理和化学变化,作为Au厚度的函数。在较窄的厚度范围内(4、8和10纳米),我们观察到一种常用的亲水性、蛋白质和细胞排斥性的聚乙二醇烷硫醇(HS-(CH₂)ₙ(O(CH₂)₂)ₘOH)SAM和疏水性、蛋白质粘附性的十六烷硫醇(SH-(CH₂)₁₅CH₃)SAM在时间上的SAM稳定性存在显著差异。在无细胞和干细胞培养条件下,8纳米的Au导致最稳定的SAMs(约7天)。4纳米和10纳米的Au SAMs在5天后以不同的降解速率表现出稳定性丧失,表明4纳米的Au最不稳定。接种在SAM表面的人间充质干细胞的迁移表明,无细胞条件下的SAM降解速率与细胞迁移行为直接相关。本研究的结果可用于开发具有可控降解速率的SAM表面,用于干细胞工程和再生医学。©2016威利期刊公司。《生物医学材料研究杂志》A部分:105A:464 - 474,2017。