Choi Harry M T, Calvert Colby R, Husain Naeem, Huss David, Barsi Julius C, Deverman Benjamin E, Hunter Ryan C, Kato Mihoko, Lee S Melanie, Abelin Anna C T, Rosenthal Adam Z, Akbari Omar S, Li Yuwei, Hay Bruce A, Sternberg Paul W, Patterson Paul H, Davidson Eric H, Mazmanian Sarkis K, Prober David A, van de Rijn Matt, Leadbetter Jared R, Newman Dianne K, Readhead Carol, Bronner Marianne E, Wold Barbara, Lansford Rusty, Sauka-Spengler Tatjana, Fraser Scott E, Pierce Niles A
Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
Department of Radiology, Children's Hospital Los Angeles, CA 90027, USA Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
Development. 2016 Oct 1;143(19):3632-3637. doi: 10.1242/dev.140137.
In situ hybridization methods are used across the biological sciences to map mRNA expression within intact specimens. Multiplexed experiments, in which multiple target mRNAs are mapped in a single sample, are essential for studying regulatory interactions, but remain cumbersome in most model organisms. Programmable in situ amplifiers based on the mechanism of hybridization chain reaction (HCR) overcome this longstanding challenge by operating independently within a sample, enabling multiplexed experiments to be performed with an experimental timeline independent of the number of target mRNAs. To assist biologists working across a broad spectrum of organisms, we demonstrate multiplexed in situ HCR in diverse imaging settings: bacteria, whole-mount nematode larvae, whole-mount fruit fly embryos, whole-mount sea urchin embryos, whole-mount zebrafish larvae, whole-mount chicken embryos, whole-mount mouse embryos and formalin-fixed paraffin-embedded human tissue sections. In addition to straightforward multiplexing, in situ HCR enables deep sample penetration, high contrast and subcellular resolution, providing an incisive tool for the study of interlaced and overlapping expression patterns, with implications for research communities across the biological sciences.
原位杂交方法在整个生物科学领域中被用于绘制完整标本内的mRNA表达图谱。多重实验,即在单个样本中绘制多个靶标mRNA,对于研究调控相互作用至关重要,但在大多数模式生物中仍然很繁琐。基于杂交链式反应(HCR)机制的可编程原位放大器通过在样本内独立运行克服了这一长期挑战,使得多重实验能够在与靶标mRNA数量无关的实验时间内进行。为了帮助广泛研究各种生物的生物学家,我们展示了在不同成像环境下的多重原位HCR:细菌、完整的线虫幼虫、完整的果蝇胚胎、完整的海胆胚胎、完整的斑马鱼幼虫、完整的鸡胚胎、完整的小鼠胚胎以及福尔马林固定石蜡包埋的人体组织切片。除了直接的多重检测外,原位HCR还能实现对样本的深度穿透、高对比度和亚细胞分辨率,为研究交错和重叠的表达模式提供了一个敏锐的工具,对整个生物科学领域的研究群体都有重要意义。