Choi Harry M T, Beck Victor A, Pierce Niles A
Division of Biology & Biological Engineering and ‡Division of Engineering & Applied Science, California Institute of Technology , Pasadena, California 91125, United States.
ACS Nano. 2014 May 27;8(5):4284-94. doi: 10.1021/nn405717p. Epub 2014 Apr 8.
Hybridization chain reaction (HCR) provides multiplexed, isothermal, enzyme-free, molecular signal amplification in diverse settings. Within intact vertebrate embryos, where signal-to-background is at a premium, HCR in situ amplification enables simultaneous mapping of multiple target mRNAs, addressing a longstanding challenge in the biological sciences. With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The properties of HCR lead to straightforward multiplexing, deep sample penetration, high signal-to-background, and sharp subcellular signal localization within fixed whole-mount zebrafish embryos, a standard model system for the study of vertebrate development. However, RNA reagents are expensive and vulnerable to enzymatic degradation. Moreover, the stringent hybridization conditions used to destabilize nonspecific hairpin binding also reduce the energetic driving force for HCR polymerization, creating a trade-off between minimization of background and maximization of signal. Here, we eliminate this trade-off by demonstrating that low background levels can be achieved using permissive in situ amplification conditions (0% formamide, room temperature) and engineer next-generation DNA HCR amplifiers that maximize the free energy benefit per polymerization step while preserving the kinetic trapping property that underlies conditional polymerization, dramatically increasing signal gain, reducing reagent cost, and improving reagent durability.
杂交链式反应(HCR)可在多种环境中实现多重、等温、无酶的分子信号放大。在完整的脊椎动物胚胎中,信号背景比至关重要,HCR原位扩增能够同时对多个靶标mRNA进行定位,解决了生命科学中长期存在的难题。通过这种方法,与mRNA靶标互补的RNA探针引发链式反应,其中亚稳态荧光团标记的RNA发夹自组装成连接的荧光扩增聚合物。HCR的特性使其能够在固定的斑马鱼胚胎整体标本(脊椎动物发育研究的标准模型系统)中实现直接多重化、深入的样本穿透、高信号背景比以及尖锐的亚细胞信号定位。然而,RNA试剂昂贵且易受酶降解影响。此外,用于破坏非特异性发夹结合的严格杂交条件也降低了HCR聚合的能量驱动力,在背景最小化和信号最大化之间形成了权衡。在此,我们通过证明使用宽松的原位扩增条件(0%甲酰胺,室温)可实现低背景水平,并设计下一代DNA HCR放大器来消除这种权衡,该放大器在保留条件聚合基础的动力学捕获特性的同时,最大化每个聚合步骤的自由能收益,显著提高信号增益、降低试剂成本并提高试剂耐用性。