Physikalische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany.
Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany.
Nat Commun. 2016 Oct 6;7:12968. doi: 10.1038/ncomms12968.
Photochemical reactions in solution often proceed via competing reaction pathways comprising intermediates that capture a solvent molecule. A disclosure of the underlying reaction mechanisms is challenging due to the rapid nature of these processes and the intricate identification of how many solvent molecules are involved. Here combining broadband femtosecond transient absorption and quantum mechanics/molecular mechanics simulations, we show for one of the most reactive species, diphenylcarbene, that the decision-maker is not the nearest solvent molecule but its neighbour. The hydrogen bonding dynamics determine which reaction channels are accessible in binary solvent mixtures at room temperature. In-depth analysis of the amount of nascent intermediates corroborates the importance of a hydrogen-bonded complex with a protic solvent molecule, in striking analogy to complexes found at cryogenic temperatures. Our results show that adjacent solvent molecules take the role of key abettors rather than bystanders for the fate of the reactive intermediate.
溶液中的光化学反应通常通过竞争反应途径进行,这些途径包含捕获溶剂分子的中间体。由于这些过程的快速性质以及如何确定有多少溶剂分子参与的复杂问题,揭示潜在的反应机制具有挑战性。在这里,我们结合宽带飞秒瞬态吸收和量子力学/分子力学模拟,展示了最具反应性的物种之一二苯卡宾,其决策因素不是最近的溶剂分子,而是其相邻分子。氢键动力学决定了在室温下二元溶剂混合物中哪些反应通道是可及的。对新生中间体数量的深入分析证实了与低温下发现的复合物具有相似性的质子溶剂分子氢键复合物的重要性。我们的结果表明,相邻的溶剂分子在反应中间体的命运中扮演着关键的教唆者而非旁观者的角色。