Jin Jun, Huang Shao-Zhuan, Liu Jing, Li Yu, Chen Li-Hua, Yu Yong, Wang Hong-En, Grey Clare P, Su Bao-Lian
Laboratory of Living Materials at the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing Wuhan University of Technology 122 Luoshi Road 430070 Wuhan Hubei China.
Department of Chemistry University of Cambridge Lensfeild Road Cambridge CB2 1EW UK.
Adv Sci (Weinh). 2015 May 8;2(7):1500070. doi: 10.1002/advs.201500070. eCollection 2015 Jul.
A hierarchical mesoporous TiO nanowire bundles (HM-TiO-NB) superstructure with amorphous surface and straight nanochannels has been designed and synthesized through a templating method at a low temperature under acidic and wet conditions. The obtained HM-TiO-NB superstructure demonstrates high reversible capacity, excellent cycling performance, and superior rate capability. Most importantly, a self-improving phenomenon of Li insertion capability based on two simultaneous effects, the crystallization of amorphous TiO and the formation of LiTiO crystalline dots on the surface of TiO nanowires, has been clearly revealed through ex situ transmission electron microcopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) techniques during the Li insertion process. When discharged for 100 cycles at 1 C, the HM-TiO-NB exhibits a reversible capacity of 174 mA h g. Even when the current density is increased to 50 C, a very stable and extraordinarily high reversible capacity of 96 mA h g can be delivered after 50 cycles. Compared to the previously reported results, both the lithium storage capacity and rate capability of our pure TiO material without any additives are among the highest values reported. The advanced electrochemical performance of these HM-TiO-NB superstructures is the result of the synergistic effect of hybriding of amorphous and crystalline (anatase/rutile) phases and hierarchically structuring of TiO nanowire bundles. Our material could be a very promising anodic material for lithium-ion batteries.
通过模板法在酸性和潮湿条件下低温设计并合成了一种具有非晶表面和直纳米通道的分级介孔TiO纳米线束(HM-TiO-NB)超结构。所获得的HM-TiO-NB超结构表现出高可逆容量、优异的循环性能和卓越的倍率性能。最重要的是,通过异位透射电子显微镜(TEM)、高分辨率透射电子显微镜(HRTEM)、X射线衍射(XRD)、拉曼光谱和X射线光电子能谱(XPS)技术,在锂嵌入过程中清楚地揭示了基于两种同时发生的效应的锂嵌入能力的自我改善现象,即非晶TiO的结晶和TiO纳米线表面上LiTiO晶点的形成。当在1 C下放电100个循环时,HM-TiO-NB的可逆容量为174 mA h g。即使将电流密度增加到50 C,在50个循环后仍可提供非常稳定且极高的96 mA h g的可逆容量。与先前报道的结果相比,我们不含任何添加剂的纯TiO材料的锂存储容量和倍率性能均处于报道的最高值之列。这些HM-TiO-NB超结构的先进电化学性能是无定形和结晶(锐钛矿/金红石)相混合以及TiO纳米线束分级结构的协同效应的结果。我们的材料可能是一种非常有前途的锂离子电池阳极材料。