Zhen Mengmeng, Zhu Xiaohe, Zhang Xiao, Zhou Zhen, Liu Lu
Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071 (P.R. China).
Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Key Laboratory of Advanced Energy, Materials Chemistry (Ministry of Education), Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071 (P.R. China).
Chemistry. 2015 Oct 5;21(41):14454-9. doi: 10.1002/chem.201502352. Epub 2015 Aug 28.
Although the synthesis of mesoporous materials is well established, the preparation of TiO2 fiber bundles with mesostructures, highly crystalline walls, and good thermal stability on the RGO nanosheets remains a challenge. Herein, a low-cost and environmentally friendly hydrothermal route for the synthesis of RGO nanosheet-supported anatase TiO2 fiber bundles with dense mesostructures is used. These mesostructured TiO2 -RGO materials are used for investigation of Li-ion insertion properties, which show a reversible capacity of 235 mA h g(-1) at 200 mA g(-1) and 150 mA h g(-1) at 1000 mA g(-1) after 1000 cycles. The higher specific surface area of the new mesostructures and high conductive substrate (RGO nanosheets) result in excellent lithium storage performance, high-rate performance, and strong cycling stability of the TiO2 -RGO composites.
尽管介孔材料的合成方法已经很成熟,但在氧化石墨烯(RGO)纳米片上制备具有介观结构、高结晶度壁和良好热稳定性的TiO₂纤维束仍然是一个挑战。在此,采用一种低成本且环境友好的水热法来合成具有致密介观结构的RGO纳米片负载锐钛矿型TiO₂纤维束。这些介观结构的TiO₂-RGO材料用于锂离子嵌入性能研究,在1000次循环后,在200 mA g⁻¹时显示出235 mA h g⁻¹的可逆容量,在1000 mA g⁻¹时显示出150 mA h g⁻¹的可逆容量。新介观结构的较高比表面积和高导电基底(RGO纳米片)导致TiO₂-RGO复合材料具有优异的锂存储性能、高倍率性能和强循环稳定性。