Vahid Afshin, Idema Timon
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
Phys Rev Lett. 2016 Sep 23;117(13):138102. doi: 10.1103/PhysRevLett.117.138102. Epub 2016 Sep 21.
Membrane tubes and tubular networks are ubiquitous in living cells. Inclusions like proteins are vital for both the stability and the dynamics of such networks. These inclusions interact via the curvature deformations they impose on the membrane. We analytically study the resulting membrane mediated interactions in strongly curved tubular membranes. We model inclusions as constraints coupled to the curvature tensor of the membrane tube. First, as special test cases, we analyze the interaction between ring- and rod-shaped inclusions. Using Monte Carlo simulations, we further show how pointlike inclusions interact to form linear aggregates. To minimize the curvature energy of the membrane, inclusions self-assemble into either line- or ringlike patterns. Our results show that the global curvature of the membrane strongly affects the interactions between proteins embedded in it, and can lead to the spontaneous formation of biologically relevant structures.
膜管和管状网络在活细胞中普遍存在。诸如蛋白质之类的内含物对于此类网络的稳定性和动态性都至关重要。这些内含物通过它们施加在膜上的曲率变形相互作用。我们对强弯曲管状膜中由此产生的膜介导相互作用进行了分析研究。我们将内含物建模为与膜管的曲率张量耦合的约束。首先,作为特殊的测试案例,我们分析了环形和棒状内含物之间的相互作用。通过蒙特卡罗模拟,我们进一步展示了点状内含物如何相互作用形成线性聚集体。为了使膜的曲率能量最小化,内含物会自组装成线状或环状图案。我们的结果表明,膜的整体曲率强烈影响嵌入其中的蛋白质之间的相互作用,并可导致生物学相关结构的自发形成。