Francis Jeremy S, Wojtas Ireneusz, Markov Vladimir, Gray Steven J, McCown Thomas J, Samulski R Jude, Bilaniuk Larissa T, Wang Dah-Jyuu, De Vivo Darryl C, Janson Christopher G, Leone Paola
Department of Cell Biology, Cell & Gene Therapy Center, Rowan School of Osteopathic Medicine, Stratford, NJ, USA.
Department of Ophthalmology, UNC, Chapel Hill, NC, USA.
Neurobiol Dis. 2016 Dec;96:323-334. doi: 10.1016/j.nbd.2016.10.001. Epub 2016 Oct 4.
Breakdown of neuro-glial N-acetyl-aspartate (NAA) metabolism results in the failure of developmental myelination, manifest in the congenital pediatric leukodystrophy Canavan disease caused by mutations to the sole NAA catabolizing enzyme aspartoacylase. Canavan disease is a major point of focus for efforts to define NAA function, with available evidence suggesting NAA serves as an acetyl donor for fatty acid synthesis during myelination. Elevated NAA is a diagnostic hallmark of Canavan disease, which contrasts with a broad spectrum of alternative neurodegenerative contexts in which levels of NAA are inversely proportional to pathological progression. Recently generated data in the nur7 mouse model of Canavan disease suggests loss of aspartoacylase function results in compromised energetic integrity prior to oligodendrocyte death, abnormalities in myelin content, spongiform degeneration, and motor deficit. The present study utilized a next-generation "oligotropic" adeno-associated virus vector (AAV-Olig001) to quantitatively assess the impact of aspartoacylase reconstitution on developmental myelination. AAV-Olig001-aspartoacylase promoted normalization of NAA, increased bioavailable acetyl-CoA, and restored energetic balance within a window of postnatal development preceding gross histopathology and deteriorating motor function. Long-term effects included increased oligodendrocyte numbers, a global increase in myelination, reversal of vacuolation, and rescue of motor function. Effects on brain energy observed following AAV-Olig001-aspartoacylase gene therapy are shown to be consistent with a metabolic profile observed in mild cases of Canavan disease, implicating NAA in the maintenance of energetic integrity during myelination via oligodendroglial aspartoacylase.
神经胶质N-乙酰天门冬氨酸(NAA)代谢的破坏会导致发育性髓鞘形成失败,这在先天性儿科脑白质营养不良——Canavan病中表现出来,该病由唯一的NAA分解代谢酶天冬氨酸酰基转移酶的突变引起。Canavan病是确定NAA功能的主要研究重点,现有证据表明NAA在髓鞘形成过程中作为脂肪酸合成的乙酰供体。NAA升高是Canavan病的诊断标志,这与其他多种神经退行性疾病情况形成对比,在这些疾病中NAA水平与病理进展呈负相关。最近在Canavan病的nur7小鼠模型中产生的数据表明,天冬氨酸酰基转移酶功能丧失会导致少突胶质细胞死亡之前的能量完整性受损、髓鞘含量异常、海绵状变性和运动功能缺陷。本研究利用下一代“寡嗜性”腺相关病毒载体(AAV-Olig001)定量评估天冬氨酸酰基转移酶重构对发育性髓鞘形成的影响。AAV-Olig001-天冬氨酸酰基转移酶促进了NAA的正常化,增加了生物可利用的乙酰辅酶A,并在大体组织病理学和运动功能恶化之前的出生后发育窗口期内恢复了能量平衡。长期影响包括少突胶质细胞数量增加、髓鞘形成全面增加、空泡化逆转以及运动功能恢复。AAV-Olig001-天冬氨酸酰基转移酶基因治疗后观察到的对脑能量的影响与Canavan病轻症病例中观察到的代谢特征一致,这表明NAA通过少突胶质细胞天冬氨酸酰基转移酶在髓鞘形成过程中维持能量完整性。