Translational Neuroscience Facility and Department of Physiology, School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia.
Acta Neuropathol. 2018 Jan;135(1):95-113. doi: 10.1007/s00401-017-1784-9. Epub 2017 Nov 7.
N-Acetylaspartate (NAA) is the second most abundant organic metabolite in the brain, but its physiological significance remains enigmatic. Toxic NAA accumulation appears to be the key factor for neurological decline in Canavan disease-a fatal neurometabolic disorder caused by deficiency in the NAA-degrading enzyme aspartoacylase. To date clinical outcome of gene replacement therapy for this spongiform leukodystrophy has not met expectations. To identify the target tissue and cells for maximum anticipated treatment benefit, we employed comprehensive phenotyping of novel mouse models to assess cell type-specific consequences of NAA depletion or elevation. We show that NAA-deficiency causes neurological deficits affecting unconscious defensive reactions aimed at protecting the body from external threat. This finding suggests, while NAA reduction is pivotal to treat Canavan disease, abrogating NAA synthesis should be avoided. At the other end of the spectrum, while predicting pathological severity in Canavan disease mice, increased brain NAA levels are not neurotoxic per se. In fact, in transgenic mice overexpressing the NAA synthesising enzyme Nat8l in neurons, supra-physiological NAA levels were uncoupled from neurological deficits. In contrast, elimination of aspartoacylase expression exclusively in oligodendrocytes elicited Canavan disease like pathology. Although conditional aspartoacylase deletion in oligodendrocytes abolished expression in the entire CNS, the remaining aspartoacylase in peripheral organs was sufficient to lower NAA levels, delay disease onset and ameliorate histopathology. However, comparable endpoints of the conditional and complete aspartoacylase knockout indicate that optimal Canavan disease gene replacement therapies should restore aspartoacylase expression in oligodendrocytes. On the basis of these findings we executed an ASPA gene replacement therapy targeting oligodendrocytes in Canavan disease mice resulting in reversal of pre-existing CNS pathology and lasting neurological benefits. This finding signifies the first successful post-symptomatic treatment of a white matter disorder using an adeno-associated virus vector tailored towards oligodendroglial-restricted transgene expression.
N-乙酰天冬氨酸(NAA)是大脑中第二丰富的有机代谢物,但它的生理意义仍然是个谜。毒性 NAA 积累似乎是 Canavan 病(一种致命的神经代谢疾病,由 NAA 降解酶天冬氨酸酰基转移酶缺乏引起)神经功能下降的关键因素。迄今为止,针对这种海绵状白质营养不良的基因替代疗法的临床结果并未达到预期。为了确定最大预期治疗效果的靶组织和细胞,我们利用新型小鼠模型的全面表型分析来评估 NAA 耗竭或升高对特定细胞类型的影响。我们发现 NAA 缺乏会导致影响无意识防御反应的神经功能缺陷,这些反应旨在保护身体免受外部威胁。这一发现表明,虽然 NAA 减少对于治疗 Canavan 病至关重要,但应避免消除 NAA 合成。在另一方面,尽管可以预测 Canavan 病小鼠的病理严重程度,但大脑中 NAA 水平升高本身并不具有神经毒性。实际上,在神经元中过表达 NAA 合成酶 Nat8l 的转基因小鼠中,超生理水平的 NAA 与神经功能缺陷无关。相比之下,仅在少突胶质细胞中消除天冬氨酸酰基转移酶的表达会引发类似 Canavan 病的病理。尽管在少突胶质细胞中条件性缺失天冬氨酸酰基转移酶会消除整个中枢神经系统中的表达,但外周器官中残留的天冬氨酸酰基转移酶足以降低 NAA 水平,延迟疾病发作并改善组织病理学。然而,条件性和完全天冬氨酸酰基转移酶敲除的可比终点表明,最佳的 Canavan 病基因替代疗法应恢复少突胶质细胞中的天冬氨酸酰基转移酶表达。基于这些发现,我们在 Canavan 病小鼠中针对少突胶质细胞执行了一种 ASPA 基因替代疗法,导致先前存在的中枢神经系统病理学逆转和持久的神经获益。这一发现标志着使用针对少突胶质细胞的腺相关病毒载体对一种白质疾病进行首次成功的症状后治疗。