Chibani Siwar, Chebbi Mouheb, Lebègue Sébastien, Cantrel Laurent, Badawi Michael
Laboratoire de Chimie et Physique - Approche Multi échelle des Milieux Complexe (LCP-A2MC, EA 4632), Institut Jean-Barriol FR2843 CNRS, Université de Lorraine, Rue Victor Demange, 57500 Saint-Avold, France.
Laboratoire de Cristallographie, Résonance Magnétique et Modélisations (CRM2, UMR CNRS 7036) Institut Jean Barriol, Université de Lorraine, BP 239, Boulevard des Aiguillettes 54506 Vandoeuvre-lès-Nancy, France.
Phys Chem Chem Phys. 2016 Sep 14;18(36):25574-25581. doi: 10.1039/c6cp05015h.
Silver modified zeolites with a mordenite structure can capture volatile iodine compounds (I and ICH) which can be released during a severe nuclear accident. However under these particular conditions, molecules such as CO and HO present in the containment atmosphere are expected to inhibit the adsorption of iodine compounds. In the present work, periodic density functional theory calculations have been carried out to investigate the interaction of I, ICH, HO and CO molecules in silver-exchanged mordenite with various Si/Al ratios with the aim of finding values that favor a selective adsorption of I and ICH. Computational results show that the interaction energies of CO and HO remain of the same order of magnitude (from -120 to -140 kJ mol for CO and from -90 to -120 kJ mol for HO) for all the investigated Si/Al ratios. In contrast, ICH is increasingly strongly adsorbed as the Si/Al ratio decreases, from around -145 kJ mol when Si/Al = 47 to -190 kJ mol for Si/Al = 5. The same trend is observed for I with a larger amplitude: from -135 kJ mol for Si/Al = 47 to -300 kJ mol for Si/Al = 5. Therefore, the use of silver-exchanged mordenite with Si/Al ratios of 5 or 11 would drastically limit the inhibiting effect of contaminants on the adsorption of volatile iodine species. Also for the same ratios, a spontaneous dissociation of I during its adsorption is observed, leading to the formation of AgI complexes which are prerequisite for the immobilization of iodine in the long term.
具有丝光沸石结构的银改性沸石能够捕获在严重核事故期间可能释放的挥发性碘化合物(I和ICH)。然而,在这些特定条件下,安全壳大气中存在的CO和HO等分子预计会抑制碘化合物的吸附。在本工作中,进行了周期性密度泛函理论计算,以研究不同Si/Al比的银交换丝光沸石中I、ICH、HO和CO分子之间的相互作用,目的是找到有利于I和ICH选择性吸附的值。计算结果表明,对于所有研究的Si/Al比,CO和HO的相互作用能保持在相同的数量级(CO为-120至-140 kJ/mol,HO为-90至-120 kJ/mol)。相比之下,随着Si/Al比的降低,ICH的吸附越来越强,从Si/Al = 47时的约-145 kJ/mol增加到Si/Al = 5时的-190 kJ/mol。I也观察到相同的趋势,但幅度更大:从Si/Al = 47时的-135 kJ/mol到Si/Al = 5时的-300 kJ/mol。因此,使用Si/Al比为5或11的银交换丝光沸石将极大地限制污染物对挥发性碘物种吸附的抑制作用。同样对于相同的比例,在I吸附过程中观察到I的自发解离,导致形成AgI络合物,这是碘长期固定的先决条件。