Suppr超能文献

类别学习与元认知判断的并发动态

Concurrent Dynamics of Category Learning and Metacognitive Judgments.

作者信息

Žauhar Valnea, Bajšanski Igor, Domijan Dražen

机构信息

Department of Psychology, Faculty of Humanities and Social Sciences, University of Rijeka Rijeka, Croatia.

出版信息

Front Psychol. 2016 Sep 27;7:1473. doi: 10.3389/fpsyg.2016.01473. eCollection 2016.

Abstract

In two experiments, we examined the correspondence between the dynamics of metacognitive judgments and classification accuracy when participants were asked to learn category structures of different levels of complexity, i.e., to learn tasks of types I, II, and III according to Shepard et al. (1961). The stimuli were simple geometrical figures varying in the following three dimensions: color, shape, and size. In Experiment 1, we found moderate positive correlations between confidence and accuracy in task type II and weaker correlation in task type I and III. Moreover, the trend analysis in the backward learning curves revealed that there is a non-linear trend in accuracy for all three task types, but the same trend was observed in confidence for the task type I and II but not for task type III. In Experiment 2, we found that the feeling-of-warmth judgments (FOWs) showed moderate positive correlation with accuracy in all task types. Trend analysis revealed a similar non-linear component in accuracy and metacognitive judgments in task type II and III but not in task type I. Our results suggest that FOWs are a more sensitive measure of the progress of learning than confidence because FOWs capture global knowledge about the category structure, while confidence judgments are given at the level of an individual exemplar.

摘要

在两项实验中,当要求参与者学习不同复杂程度的类别结构(即根据谢泼德等人,1961年的研究学习I、II和III型任务)时,我们考察了元认知判断的动态变化与分类准确性之间的对应关系。刺激物是简单的几何图形,在颜色、形状和大小这三个维度上有所变化。在实验1中,我们发现任务II型中信心与准确性之间存在中等程度的正相关,而在任务I型和III型中相关性较弱。此外,对逆向学习曲线的趋势分析表明,所有三种任务类型的准确性都存在非线性趋势,但任务I型和II型的信心呈现出相同趋势,而任务III型则不然。在实验2中,我们发现温暖感判断(FOWs)在所有任务类型中都与准确性呈现出中等程度的正相关。趋势分析表明,任务II型和III型的准确性和元认知判断中存在类似的非线性成分,而任务I型中则没有。我们的结果表明,温暖感判断比信心更能敏感地衡量学习进展,因为温暖感判断捕捉了关于类别结构的全局知识,而信心判断是在单个范例的层面上做出的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/509f/5037202/44dbe9658dbe/fpsyg-07-01473-g001.jpg

相似文献

1
Concurrent Dynamics of Category Learning and Metacognitive Judgments.
Front Psychol. 2016 Sep 27;7:1473. doi: 10.3389/fpsyg.2016.01473. eCollection 2016.
2
Metacognitive accuracy across cognitive and physical task domains.
Psychon Bull Rev. 2022 Aug;29(4):1524-1530. doi: 10.3758/s13423-022-02066-4. Epub 2022 Feb 23.
3
Cross-Domain Association in Metacognitive Efficiency Depends on First-Order Task Types.
Front Psychol. 2018 Dec 4;9:2464. doi: 10.3389/fpsyg.2018.02464. eCollection 2018.
4
Domain-specific and domain-general processes underlying metacognitive judgments.
Conscious Cogn. 2017 Mar;49:264-277. doi: 10.1016/j.concog.2017.01.011. Epub 2017 Mar 8.
5
But I Was So Sure! Metacognitive Judgments Are Less Accurate Given Prospectively than Retrospectively.
Front Psychol. 2016 Feb 19;7:218. doi: 10.3389/fpsyg.2016.00218. eCollection 2016.
6
Common computations for metacognition and meta-metacognition.
Neurosci Conscious. 2023 Nov 7;2023(1):niad023. doi: 10.1093/nc/niad023. eCollection 2023.
7
Metacognitive judgments during visuomotor learning reflect the integration of error history.
J Neurophysiol. 2023 Aug 1;130(2):264-277. doi: 10.1152/jn.00022.2023. Epub 2023 Jun 28.
8
Metacognitive monitoring during category learning: how success affects future behaviour.
Memory. 2016 Oct;24(9):1197-207. doi: 10.1080/09658211.2015.1086805. Epub 2015 Sep 17.
9
10
Metacognitive changes and sources of confidence judgements in health professions classroom learning.
Curr Pharm Teach Learn. 2019 Apr;11(4):338-345. doi: 10.1016/j.cptl.2019.01.005. Epub 2019 Feb 21.

引用本文的文献

1
Comparing methods of category learning: Classification versus feature inference.
Mem Cognit. 2020 Jul;48(5):710-730. doi: 10.3758/s13421-020-01022-8.
2
Do people use category-learning judgments to regulate their learning of natural categories?
Mem Cognit. 2017 Nov;45(8):1253-1269. doi: 10.3758/s13421-017-0729-9.

本文引用的文献

1
Study preferences for exemplar variability in self-regulated category learning.
Memory. 2017 Feb;25(2):231-243. doi: 10.1080/09658211.2016.1152378. Epub 2016 Feb 25.
2
Metacognitive monitoring during category learning: how success affects future behaviour.
Memory. 2016 Oct;24(9):1197-207. doi: 10.1080/09658211.2015.1086805. Epub 2015 Sep 17.
3
One Giant Leap for Categorizers: One Small Step for Categorization Theory.
PLoS One. 2015 Sep 2;10(9):e0137334. doi: 10.1371/journal.pone.0137334. eCollection 2015.
4
Individual differences in category learning: memorization versus rule abstraction.
Mem Cognit. 2015 Feb;43(2):283-97. doi: 10.3758/s13421-014-0475-1.
5
The diminishing criterion model for metacognitive regulation of time investment.
J Exp Psychol Gen. 2014 Jun;143(3):1349-68. doi: 10.1037/a0035098. Epub 2013 Dec 23.
6
Human learning of elemental category structures: revising the classic result of Shepard, Hovland, and Jenkins (1961).
J Exp Psychol Learn Mem Cogn. 2013 Mar;39(2):552-72. doi: 10.1037/a0029178. Epub 2012 Jul 16.
8
Mental models of Boolean concepts.
Cogn Psychol. 2011 Aug;63(1):34-59. doi: 10.1016/j.cogpsych.2011.04.001. Epub 2011 Jun 2.
10
Human category learning 2.0.
Ann N Y Acad Sci. 2011 Apr;1224:147-161. doi: 10.1111/j.1749-6632.2010.05874.x. Epub 2010 Dec 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验