Caussinus Emmanuel, Affolter Markus
Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
Growth & Development, Biozentrum, University of Basel, Room 200B, Klingelbergstrasse 50/70, 4056, Basel, Switzerland.
Methods Mol Biol. 2016;1478:177-187. doi: 10.1007/978-1-4939-6371-3_9.
Protein depletion by genetic means, in a very general sense including the use of RNA interference [1, 2] or CRISPR/Cas9-based methods, represents a central paradigm of modern biology to study protein functions in vivo. However, acting upstream the proteic level is a limiting factor if the turnover of the target protein is slow or the existing pool of the target protein is important (for instance, in insect embryos, as a consequence of a strong maternal contribution). In order to circumvent these problems, we developed deGradFP [3, 4]. deGradFP harnesses the ubiquitin-proteasome pathway to achieve direct depletion of GFP-tagged proteins. deGradFP is in essence a universal method because it relies on an evolutionarily conserved machinery for protein catabolism in eukaryotic cells; see refs. 5, 6 for review. deGradFP is particularly convenient in Drosophila melanogaster where it is implemented by a genetically encoded effector expressed under the control of the Gal4 system. deGradFP is a ready-to-use solution to perform knockdowns at the protein level if a fly line carrying a functional GFP-tagged version of the gene of interest is available. Many such lines have already been generated by the Drosophila community through different technologies allowing to make genomic rescue constructs or direct GFP knockins: protein-trap stock collections [7, 8] ( http://cooley.medicine.yale.edu/flytrap/ , http://www.flyprot.org/ ), P[acman] system [9], MiMIC lines [10, 11], and CRISPR/Cas9-driven homologous recombination.Two essential controls of a protein knockdown experiment are easily achieved using deGradFP. First, the removal of the target protein can be assessed by monitoring the disappearance of the GFP tag by fluorescence microscopy in parallel to the documentation of the phenotype of the protein knockdown (see Note 1 ). Second, the potential nonspecific effects of deGradFP can be assessed in control fly lacking a GFP-tagged target protein. So far, no nonspecific effects of the deGradFP effector have been reported [3].
从广义上讲,通过基因手段实现蛋白质耗竭,包括使用RNA干扰[1,2]或基于CRISPR/Cas9的方法,是现代生物学研究体内蛋白质功能的核心范式。然而,如果目标蛋白的周转缓慢或目标蛋白的现有库很重要(例如,在昆虫胚胎中,由于母体的强大贡献),作用于蛋白质水平上游是一个限制因素。为了规避这些问题,我们开发了deGradFP[3,4]。deGradFP利用泛素-蛋白酶体途径实现对GFP标记蛋白的直接耗竭。deGradFP本质上是一种通用方法,因为它依赖于真核细胞中蛋白质分解代谢的进化保守机制;综述见参考文献5、6。deGradFP在黑腹果蝇中特别方便,它通过在Gal4系统控制下表达的基因编码效应物来实现。如果有携带感兴趣基因的功能性GFP标记版本的果蝇品系,deGradFP是在蛋白质水平上进行敲低的现成解决方案。果蝇研究群体已经通过不同技术产生了许多这样的品系,这些技术允许制作基因组拯救构建体或直接进行GFP敲入:蛋白质陷阱库[7,8](http://cooley.medicine.yale.edu/flytrap/,http://www.flyprot.org/)、P[acman]系统[9]、MiMIC品系[10,11]以及CRISPR/Cas9驱动的同源重组。使用deGradFP可以轻松实现蛋白质敲低实验的两个基本对照。首先,可以通过荧光显微镜监测GFP标签的消失来评估目标蛋白的去除情况,同时记录蛋白质敲低的表型(见注释1)。其次,可以在缺乏GFP标记目标蛋白的对照果蝇中评估deGradFP的潜在非特异性效应。到目前为止,尚未有关于deGradFP效应物非特异性效应的报道[3]。