Suppr超能文献

2-磺酰基嘧啶作为群体感应抑制剂应对铜绿假单胞菌生物膜形成和胞外DNA释放的构效关系

Structure-Activity Relationships of 2-Sufonylpyrimidines as Quorum-Sensing Inhibitors to Tackle Biofilm Formation and eDNA Release of Pseudomonas aeruginosa.

作者信息

Thomann Andreas, Brengel Christian, Börger Carsten, Kail Dagmar, Steinbach Anke, Empting Martin, Hartmann Rolf W

机构信息

Helmholtz Institute for Pharmaceutical Research Saarland, Department of Drug Design and Optimization, Campus E 8.1, 66123, Saarbrücken, Germany.

PharmBioTec GmbH, Science Park 1, 66123, Saarbrücken, Germany.

出版信息

ChemMedChem. 2016 Nov 21;11(22):2522-2533. doi: 10.1002/cmdc.201600419. Epub 2016 Oct 12.

Abstract

Drug-resistant Pseudomonas aeruginosa (PA) strains are on the rise, making treatment with current antibiotics ineffective. Hence, circumventing resistance or restoring the activity of antibiotics by novel approaches is of high demand. Targeting the Pseudomonas quinolone signal quorum sensing (PQS-QS) system is an intriguing strategy to abolish PA pathogenicity without affecting the viability of the pathogen. Herein we report the structure-activity relationships of 2-sulfonylpyrimidines, which were previously identified as dual-target inhibitors of the PQS receptor PqsR and the PQS synthase PqsD. The SAR elucidation was guided by a combined approach using ligand efficiency and ligand lipophilicity efficiency to select the most promising compounds. In addition, the most effective inhibitors were rationally modified by the guidance of QSAR using Hansch analyses. Finally, these inhibitors showed the capacity to decrease biofilm mass and extracellular DNA, which are important determinants for antibiotic resistance.

摘要

耐药性铜绿假单胞菌(PA)菌株正在增加,使得目前使用抗生素进行治疗无效。因此,通过新方法规避耐药性或恢复抗生素活性的需求很高。靶向铜绿假单胞菌喹诺酮信号群体感应(PQS-QS)系统是一种有趣的策略,可在不影响病原体生存能力的情况下消除PA的致病性。在此,我们报告了2-磺酰基嘧啶的构效关系,其先前被鉴定为PQS受体PqsR和PQS合酶PqsD的双靶点抑制剂。构效关系的阐明是通过使用配体效率和配体亲脂性效率的组合方法来选择最有前景的化合物来指导的。此外,最有效的抑制剂在使用Hansch分析的定量构效关系指导下进行了合理修饰。最后,这些抑制剂显示出降低生物膜量和细胞外DNA的能力,而生物膜量和细胞外DNA是抗生素耐药性的重要决定因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验