Strecker Paul, Ludewig Susann, Rust Marco, Mundinger Tabea A, Görlich Andreas, Krächan Elisa G, Mehrfeld Christina, Herz Joachim, Korte Martin, Guénette Suzanne Y, Kins Stefan
Division of Human Biology and Human Genetics, Erwin-Schrödinger-Straße13, 67663 Kaiserslautern, Germany.
Department of Cellular Neurobiology, Technical University of Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany.
Sci Rep. 2016 May 11;6:25652. doi: 10.1038/srep25652.
The FE65 adaptor proteins (FE65, FE65L1 and FE65L2) bind proteins that function in diverse cellular pathways and are essential for specific biological processes. Mice lacking both FE65 and FE65L1 exhibit ectopic neuronal positioning in the cortex and muscle weakness. p97FE65-KO mice, expressing a shorter FE65 isoform able to bind amyloid precursor protein family members (APP, APLP1, APLP2), develop defective long-term potentiation (LTP) and aged mice display spatial learning and memory deficits that are absent from young mice. Here, we examined the central and peripheral nervous systems of FE65-KO, FE65L1-KO and FE65/FE65L1-DKO mice. We find spatial learning and memory deficits in FE65-KO and FE65L1-KO mice. Severe motor impairments, anxiety, hippocampal LTP deficits and neuromuscular junction (NMJ) abnormalities, characterized by decreased size and reduced apposition of pre- and postsynaptic sites, are observed in FE65/FE65L1-DKO mice. As their NMJ deficits resemble those of mutant APP/APLP2-DKO mice lacking the FE65/FE65L1 binding site, the NMJs of APLP2/FE65-DKO and APLP2/FE65L1-DKO mice were analyzed. NMJ deficits are aggravated in these mice when compared to single FE65- and FE65L1-KO mice. Together, our data demonstrate a role for FE65 proteins at central and peripheral synapses possibly occurring downstream of cell surface-associated APP/APLPs.
FE65衔接蛋白(FE65、FE65L1和FE65L2)可结合在多种细胞途径中发挥作用且对特定生物学过程至关重要的蛋白质。同时缺乏FE65和FE65L1的小鼠在皮质中表现出异位神经元定位以及肌肉无力。p97FE65基因敲除小鼠表达一种较短的FE65异构体,该异构体能够结合淀粉样前体蛋白家族成员(APP、APLP1、APLP2),其长期增强作用(LTP)出现缺陷,老年小鼠表现出空间学习和记忆缺陷,而年轻小鼠则没有这些缺陷。在此,我们研究了FE65基因敲除、FE65L1基因敲除和FE65/FE65L1双基因敲除小鼠的中枢和外周神经系统。我们发现FE65基因敲除和FE65L1基因敲除小鼠存在空间学习和记忆缺陷。在FE65/FE65L1双基因敲除小鼠中观察到严重的运动障碍、焦虑、海马LTP缺陷以及神经肌肉接头(NMJ)异常,其特征是突触前和突触后位点的大小减小且并置减少。由于它们的NMJ缺陷类似于缺乏FE65/FE65L1结合位点的突变APP/APLP2双基因敲除小鼠,因此我们分析了APLP2/FE65双基因敲除和APLP2/FE65L1双基因敲除小鼠的NMJ。与单一的FE65和FE65L1基因敲除小鼠相比,这些小鼠的NMJ缺陷更加严重。总之,我们的数据表明FE65蛋白在中枢和外周突触中发挥作用,可能发生在细胞表面相关的APP/APLPs下游。