International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P.R. China.
Angew Chem Int Ed Engl. 2016 Nov 7;55(46):14310-14314. doi: 10.1002/anie.201608597. Epub 2016 Oct 13.
Modular optimization of metal-organic frameworks (MOFs) was realized by incorporation of coordinatively unsaturated single atoms in a MOF matrix. The newly developed MOF can selectively capture and photoreduce CO with high efficiency under visible-light irradiation. Mechanistic investigation reveals that the presence of single Co atoms in the MOF can greatly boost the electron-hole separation efficiency in porphyrin units. Directional migration of photogenerated excitons from porphyrin to catalytic Co centers was witnessed, thereby achieving supply of long-lived electrons for the reduction of CO molecules adsorbed on Co centers. As a direct result, porphyrin MOF comprising atomically dispersed catalytic centers exhibits significantly enhanced photocatalytic conversion of CO , which is equivalent to a 3.13-fold improvement in CO evolution rate (200.6 μmol g h ) and a 5.93-fold enhancement in CH generation rate (36.67 μmol g h ) compared to the parent MOF.
通过在金属-有机骨架 (MOF) 基质中引入配位不饱和的单原子,实现了 MOF 的模块化优化。新开发的 MOF 可以在可见光照射下高效选择性捕获和光还原 CO。机理研究表明,MOF 中单 Co 原子的存在可以大大提高卟啉单元中的电子-空穴分离效率。从卟啉到催化 Co 中心的光生激子的定向迁移得到了证实,从而为吸附在 Co 中心上的 CO 分子的还原提供了长寿命电子。因此,包含原子分散催化中心的卟啉 MOF 表现出显著增强的 CO 光催化转化,与母体 MOF 相比,CO 释放速率(200.6 μmol·g-1·h-1)提高了 3.13 倍,CH 生成速率(36.67 μmol·g-1·h-1)提高了 5.93 倍。