Dong Yong-Li, Jiang Yu, Ni Shuang, Guan Guo-Wei, Zheng Su-Tao, Guan Qingqing, Pei Ling-Min, Yang Qing-Yuan
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
Key Laboratory of Oil and Gas Fine Chemicals of Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi, 830017, China.
Small. 2024 Jun;20(23):e2308005. doi: 10.1002/smll.202308005. Epub 2023 Dec 26.
The conversion of CO into valuable carbon-based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of paramount importance to develop efficient photocatalysts for the catalytic conversion of CO using visible light. In this study, the Ni-MOF-74 material is successfully modified to achieve a highly porous structure (Ni-74-Am) through temperature and solvent modulation. Compared to the original Ni-MOF-74, Ni-74-Am contains more unsaturated Ni active sites resulting from defects, thereby enhancing the performance of CO photocatalytic conversion. Remarkably, Ni-74-Am exhibits outstanding photocatalytic performance, with a CO generation rate of 1380 µmol g h and 94% CO selectivity under visible light, significantly surpassing the majority of MOF-based photocatalysts reported to date. Furthermore, experimental characterizations reveal that Ni-74-Am has significantly higher efficiency of photogenerated electron-hole separation and faster carrier migration rate for photocatalytic CO reduction. This work enriches the design and application of defective MOFs and provides new insights into the design of MOF-based photocatalysts for renewable energy and environmental sustainability. The findings of this study hold significant promise for developing efficient photocatalysts for CO reduction under visible-light conditions.
利用清洁可再生太阳能将一氧化碳转化为有价值的碳基产品一直是光催化领域的一项重大挑战。开发用于可见光催化转化一氧化碳的高效光催化剂至关重要。在本研究中,通过温度和溶剂调控成功修饰了Ni-MOF-74材料,以实现高度多孔的结构(Ni-74-Am)。与原始的Ni-MOF-74相比,Ni-74-Am含有更多因缺陷产生的不饱和镍活性位点,从而提高了一氧化碳光催化转化性能。值得注意的是,Ni-74-Am表现出优异的光催化性能,在可见光下一氧化碳生成速率为1380 μmol g⁻¹ h⁻¹,一氧化碳选择性为94%,显著超过了迄今为止报道的大多数基于金属有机框架(MOF)的光催化剂。此外,实验表征表明,Ni-74-Am具有更高的光生电子-空穴分离效率和更快的载流子迁移速率用于光催化一氧化碳还原。这项工作丰富了缺陷型MOF的设计与应用,并为基于MOF的可再生能源和环境可持续性光催化剂设计提供了新的见解。本研究结果对于开发可见光条件下高效的一氧化碳还原光催化剂具有重要前景。