Kick Kerstin, Nekolla Katharina, Rehberg Markus, Vollmar Angelika M, Zahler Stefan
From the Department of Pharmacy, Pharmaceutical Biology (K.K., A.M.V., S.Z.) and Walter Brendel Centre of Experimental Medicine (K.N., M.R.), Ludwig-Maximilians-Universität, Munich, Germany.
Arterioscler Thromb Vasc Biol. 2016 Dec;36(12):2346-2357. doi: 10.1161/ATVBAHA.116.307870. Epub 2016 Oct 13.
Cell-matrix interactions are crucial for regulating cellular activities, such as migration. This is of special importance for morphogenic processes, such as angiogenesis (the development of new blood vessels). Most of our understanding of cell migration relies on 2-dimensional (2D) experiments. However, the awareness that 3D settings might elicit different results has increased. Knowledge about endothelial cell (EC) behavior in 3D environments and the influence of matrix composition on EC migration, in particular, is still limited.
We characterize the migration of single ECs through 2 structurally different hydrogels: spongy Matrigel and fibrillar collagen I. Our observations reveal an elongated migration phenotype in Matrigel and a rounded phenotype with pronounced cell blebs (blebs >2 µm) in collagen I, which have not previously been described in ECs. Directed migration seems to depend on Rac1 and Cdc42 in collagen, but not in Matrigel (shown using appropriate pharmacological inhibitors). By applying anti-integrin antibodies and supplementing laminin in collagen gels, we identify laminin as the main determinant of the elongated phenotype. Laminin seems to induce a morphological switch between modes of migration. As an in situ proof of principle, we performed live imaging of EC migration during vascular growth in a murine retina in the absence and presence of anti-integrin antibodies.
We show that, surprisingly, ECs can evade the pharmacological inhibition of central signaling pathways involved in migration (contractility, small GTPases, and proteolysis) by shifting gears between modes of migration. This finding indicates an unexpected contextual plasticity of EC behavior.
细胞与基质的相互作用对于调节细胞活动(如迁移)至关重要。这对于形态发生过程(如血管生成,即新血管的形成)尤为重要。我们对细胞迁移的大多数理解都依赖于二维(2D)实验。然而,人们越来越意识到三维环境可能会产生不同的结果。特别是关于内皮细胞(EC)在三维环境中的行为以及基质组成对EC迁移的影响的知识仍然有限。
我们通过两种结构不同的水凝胶来表征单个EC的迁移:海绵状基质胶和纤维状I型胶原。我们的观察结果显示,在基质胶中EC呈现伸长的迁移表型,而在I型胶原中呈现圆形表型且伴有明显的细胞泡(泡直径>2μm),这在EC中此前尚未有过描述。在胶原中,定向迁移似乎依赖于Rac1和Cdc42,但在基质胶中并非如此(使用适当的药理学抑制剂证明)。通过应用抗整合素抗体并在胶原凝胶中补充层粘连蛋白,我们确定层粘连蛋白是伸长表型的主要决定因素。层粘连蛋白似乎诱导了迁移模式之间的形态转换。作为原理的原位证明,我们在有无抗整合素抗体的情况下,对小鼠视网膜血管生长过程中的EC迁移进行了实时成像。
我们惊奇地发现,EC可以通过在迁移模式之间切换来规避参与迁移的中心信号通路(收缩性、小GTP酶和蛋白水解)的药理学抑制。这一发现表明EC行为存在意想不到的情境可塑性。