Peropadre Borja, Guerreschi Gian Giacomo, Huh Joonsuk, Aspuru-Guzik Alán
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
Mueunjae Institute for Chemistry (MIC), Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea.
Phys Rev Lett. 2016 Sep 30;117(14):140505. doi: 10.1103/PhysRevLett.117.140505. Epub 2016 Sep 28.
Boson sampling, the task of sampling the probability distribution of photons at the output of a photonic network, is believed to be hard for any classical device. Unlike other models of quantum computation that require thousands of qubits to outperform classical computers, boson sampling requires only a handful of single photons. However, a scalable implementation of boson sampling is missing. Here, we show how superconducting circuits provide such platform. Our proposal differs radically from traditional quantum-optical implementations: rather than injecting photons in waveguides, making them pass through optical elements like phase shifters and beam splitters, and finally detecting their output mode, we prepare the required multiphoton input state in a superconducting resonator array, control its dynamics via tunable and dispersive interactions, and measure it with nondemolition techniques.
玻色子采样,即对光子网络输出端光子概率分布进行采样的任务,被认为对任何经典设备来说都很困难。与其他需要数千个量子比特才能超越经典计算机的量子计算模型不同,玻色子采样仅需要少量单光子。然而,目前仍缺少玻色子采样的可扩展实现方案。在此,我们展示了超导电路如何提供这样一个平台。我们的方案与传统量子光学实现方式有根本区别:传统方式是将光子注入波导,使其通过诸如移相器和分束器等光学元件,最后检测其输出模式;而我们是在超导谐振器阵列中制备所需的多光子输入态,通过可调谐和色散相互作用控制其动力学,并采用无损技术进行测量。