Wang Wei-Yuan, Zhao Xiu-Fen, Ju Xiao-Han, Wang Yu, Wang Lin, Li Shu-Ping, Li Xiao-Dong
Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing, 210023, China.
Jiangsu Key Laboratory of Biofunctional Material, College of Chemistry and Material Science, Nanjing Normal University, Nanjing, 210023, China; Jiangsu Provincial Key Laboratory of Palygorskite Science and Applied Technology, Huaiyin Institute of Technology, Huaian, 223003, China.
Int J Pharm. 2016 Dec 30;515(1-2):221-232. doi: 10.1016/j.ijpharm.2016.10.022. Epub 2016 Oct 12.
A novel morphology change of Au-methotrexate (Au-MTX) conjugates that could transform from nanochains to discrete nanoparticles was achieved by a simple, one-pot, and hydrothermal growth method. Herein, MTX was used efficiently as a complex-forming agent, reducing agent, capping agent, and importantly a targeting anticancer drug. The formation mechanism suggested a similarity with the molecular imprinting technology. The Au-MTX complex induced the MTX molecules to selectively adsorb on different crystal facets of gold nanoparticles (AuNPs) and then formed gold nanospheres. Moreover, the abundantly binding MTX molecules promoted directional alignment of these gold nanospheres to further form nanochains. More interestingly, the linear structures gradually changed into discrete nanoparticles by adding different amount of ethylene diamine tetra (methylene phosphonic acid) (EDTMPA) into the initial reaction solution, which likely arose from the strong electrostatic effect of the negatively charged phosphonic acid groups. Compared with the as-prepared nanochains, the resultant discrete nanoparticles showed almost equal drug loading capacity but with higher drug release control, colloidal stability, and in vitro anticancer activity.
通过一种简单的一锅水热生长法,实现了金-甲氨蝶呤(Au-MTX)缀合物的一种新型形态变化,即从纳米链转变为离散的纳米颗粒。在此,MTX被有效地用作络合剂、还原剂、封端剂,重要的是还用作靶向抗癌药物。其形成机制表明与分子印迹技术有相似之处。Au-MTX络合物诱导MTX分子选择性吸附在金纳米颗粒(AuNPs)的不同晶面上,然后形成金纳米球。此外,大量结合的MTX分子促进了这些金纳米球的定向排列,进而形成纳米链。更有趣的是,通过向初始反应溶液中加入不同量的乙二胺四(亚甲基膦酸)(EDTMPA),线性结构逐渐转变为离散的纳米颗粒,这可能是由于带负电荷的膦酸基团的强静电作用所致。与制备的纳米链相比,所得离散纳米颗粒显示出几乎相同的载药量,但具有更高的药物释放控制、胶体稳定性和体外抗癌活性。
Colloids Surf B Biointerfaces. 2016-5-1
J Nanobiotechnology. 2018-11-13
J Colloid Interface Sci. 2010-8-1
Nanomaterials (Basel). 2018-11-28