Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3, Slovenia.
Comput Biol Med. 2016 Dec 1;79:30-35. doi: 10.1016/j.compbiomed.2016.10.003. Epub 2016 Oct 4.
Protein-protein interactions (PPI) play an important role in function of all organisms and enable understanding of underlying metabolic processes. Computational predictions of PPIs are an important aspect in proteomics, as experimental methods may result in high degree of false positive results and are more expensive. Although there are many databases collecting predicted PPIs, exploration of genetics information underlying PPI interactions has not been investigated thoroughly. The aim of the present study was to identify genomic locations corresponding to regions involved in predicted PPIs and to collect non-synonymous polymorphisms (nsSNPs) located within those regions; which we termed PPI-SNPs.
Predicted PPIs were obtained from PiSITE database (http://pisite.hgc.jp). Non-synonymous SNPs mapped on protein structural data (PDBs) were obtained from the UCSC server. Polymorphism locations on protein structures were mapped to predicted PPI regions. DAVID tool was used for pathway enrichment and gene cluster analysis (https://david.ncifcrf.gov/).
We collected 544 polymorphisms located within predicted PPI sites that map to 197 genes. We identified 9 SNPs, previously associated with diseases, but not yet associated with PPI sites. We also found examples in which polymorphisms located within predicted PPI regions are also occurring within previously experimentally validated PPIs and within experimentally determined functional domains.
Our study provides the first catalog of nsSNPs located within predicted PPIs. These prioritized SNPs present the basis for planning experimental validation of SNPs that cause gain or loss of PPIs. Our implementation is expandable, as datasets used are constantly updated.
蛋白质-蛋白质相互作用(PPI)在所有生物体的功能中起着重要作用,并使我们能够理解潜在的代谢过程。PPI 的计算预测是蛋白质组学的一个重要方面,因为实验方法可能导致高度的假阳性结果,而且成本更高。尽管有许多数据库收集预测的 PPI,但对 PPI 相互作用背后的遗传信息的探索还没有得到彻底的研究。本研究的目的是确定与预测的 PPI 相互作用相关的基因组位置,并收集位于这些区域内的非同义突变(nsSNP);我们称之为 PPI-SNP。
从 PiSITE 数据库(http://pisite.hgc.jp)获得预测的 PPI。从 UCSC 服务器获得映射到蛋白质结构数据(PDB)的非同义 SNP。将蛋白质结构上的多态性位置映射到预测的 PPI 区域。使用 DAVID 工具进行通路富集和基因聚类分析(https://david.ncifcrf.gov/)。
我们收集了 544 个位于预测的 PPI 位点内的多态性,这些多态性映射到 197 个基因。我们发现了 9 个以前与疾病相关但尚未与 PPI 位点相关的 SNP。我们还发现了一些例子,其中位于预测的 PPI 区域内的多态性也发生在以前实验验证的 PPI 内和实验确定的功能域内。
我们的研究提供了位于预测的 PPI 内的 nsSNP 的首个目录。这些优先的 SNP 为计划验证导致 PPI 增益或损失的 SNP 的实验验证提供了基础。我们的实现是可扩展的,因为使用的数据集是不断更新的。