Voos Wolfgang, Jaworek Witold, Wilkening Anne, Bruderek Michael
Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Nussallee 11, D-53115 Bonn, Germany
Institut für Biochemie und Molekularbiologie (IBMB), Universität Bonn, Nussallee 11, D-53115 Bonn, Germany.
Essays Biochem. 2016 Oct 15;60(2):213-225. doi: 10.1042/EBC20160009.
Mitochondria are essential constituents of a eukaryotic cell by supplying ATP and contributing to many mayor metabolic processes. As endosymbiotic organelles, they represent a cellular subcompartment exhibiting many autonomous functions, most importantly containing a complete endogenous machinery responsible for protein expression, folding and degradation. This article summarizes the biochemical processes and the enzymatic components that are responsible for maintaining mitochondrial protein homoeostasis. As mitochondria lack a large part of the required genetic information, most proteins are synthesized in the cytosol and imported into the organelle. After reaching their destination, polypeptides must fold and assemble into active proteins. Under pathological conditions, mitochondrial proteins become misfolded or damaged and need to be repaired with the help of molecular chaperones or eventually removed by specific proteases. Failure of these protein quality control mechanisms results in loss of mitochondrial function and structural integrity. Recently, novel mechanisms have been identified that support mitochondrial quality on the organellar level. A mitochondrial unfolded protein response allows the adaptation of chaperone and protease activities. Terminally damaged mitochondria may be removed by a variation of autophagy, termed mitophagy. An understanding of the role of protein quality control in mitochondria is highly relevant for many human pathologies, in particular neurodegenerative diseases.
线粒体是真核细胞的重要组成部分,通过提供ATP并参与许多主要的代谢过程发挥作用。作为内共生细胞器,它们代表了一个具有许多自主功能的细胞亚区室,最重要的是包含一套完整的负责蛋白质表达、折叠和降解的内源性机制。本文总结了负责维持线粒体蛋白质稳态的生化过程和酶成分。由于线粒体缺乏大部分所需的遗传信息,大多数蛋白质在细胞质中合成并导入该细胞器。到达目的地后,多肽必须折叠并组装成活性蛋白。在病理条件下,线粒体蛋白会错误折叠或受损,需要分子伴侣的帮助进行修复,最终由特定蛋白酶清除。这些蛋白质质量控制机制的失效会导致线粒体功能和结构完整性的丧失。最近,已发现了在细胞器水平上支持线粒体质量的新机制。线粒体未折叠蛋白反应可使伴侣蛋白和蛋白酶的活性适应变化。终末受损的线粒体可通过一种称为线粒体自噬的自噬变体被清除。了解蛋白质质量控制在线粒体中的作用与许多人类疾病,特别是神经退行性疾病高度相关。