Johnson Tyler A, Milan-Lobo Laura, Che Tao, Ferwerda Madeline, Lambu Eptisam, McIntosh Nicole L, Li Fei, He Li, Lorig-Roach Nicholas, Crews Phillip, Whistler Jennifer L
Department of Chemistry and Biochemistry, University of California , Santa Cruz, California 95064, United States.
Department of Natural Sciences and Mathematics, Dominican University of California , San Rafael, California 94901, United States.
ACS Chem Neurosci. 2017 Mar 15;8(3):473-485. doi: 10.1021/acschemneuro.6b00167. Epub 2016 Nov 22.
Opioid therapeutics are excellent analgesics, whose utility is compromised by dependence. Morphine (1) and its clinically relevant derivatives such as OxyContin (2), Vicodin (3), and Dilaudid (4) are "biased" agonists at the μ opioid receptor (OR), wherein they engage G protein signaling but poorly engage β-arrestin and the endocytic machinery. In contrast, endorphins, the endogenous peptide agonists for ORs, are potent analgesics, show reduced liability for tolerance and dependence, and engage both G protein and β-arrestin pathways as "balanced" agonists. We set out to determine if marine-derived alkaloids could serve as novel OR agonist chemotypes with a signaling profile distinct from morphine and more similar to the endorphins. Screening of 96 sponge-derived extracts followed by LC-MS-based purification to pinpoint the active compounds and subsequent evaluation of a mini library of related alkaloids identified two structural classes that modulate the ORs. These included the following: aaptamine (10), 9-demethyl aaptamine (11), demethyl (oxy)-aaptamine (12) with activity at the δ-OR (EC: 5.1, 4.1, 2.3 μM, respectively) and fascaplysin (17), and 10-bromo fascaplysin (18) with activity at the μ-OR (EC: 6.3, 4.2 μM respectively). An in vivo evaluation of 10 using δ-KO mice indicated its previously reported antidepressant-like effects are dependent on the δ-OR. Importantly, 17 functioned as a balanced agonist promoting both G protein signaling and β-arrestin recruitment along with receptor endocytosis similar to the endorphins. Collectively these results demonstrate the burgeoning potential for marine natural products to serve as novel lead compounds for therapeutic targets in neuroscience research.
阿片类药物是优秀的镇痛药,但其效用因成瘾性而受到影响。吗啡(1)及其临床相关衍生物,如奥施康定(2)、维柯丁(3)和度冷丁(4),是μ阿片受体(OR)的“偏向性”激动剂,它们能激活G蛋白信号传导,但与β-抑制蛋白和内吞机制的相互作用较弱。相比之下,内啡肽作为OR的内源性肽类激动剂,是强效镇痛药,耐受性和成瘾性较低,并且作为“平衡”激动剂能同时激活G蛋白和β-抑制蛋白信号通路。我们着手研究海洋来源的生物碱是否可以作为新型的OR激动剂化学类型,其信号特征不同于吗啡,更类似于内啡肽。对96种海绵提取物进行筛选,随后基于液相色谱-质谱联用进行纯化以确定活性化合物,并对相关生物碱的小型文库进行后续评估,确定了两类调节OR的结构类型。其中包括:对δ-OR有活性的aaptamine(10)、9-去甲基aaptamine(11)、去甲基(氧基)-aaptamine(12)(EC分别为5.1、4.1、2.3 μM),以及对μ-OR有活性的fascaplysin(17)和10-溴fascaplysin(18)(EC分别为6.3、4.2 μM)。使用δ-KO小鼠对10进行的体内评估表明,其先前报道的类抗抑郁作用依赖于δ-OR。重要的是,17起到了平衡激动剂的作用,促进G蛋白信号传导和β-抑制蛋白募集以及受体内吞,类似于内啡肽。总体而言,这些结果证明了海洋天然产物作为神经科学研究中治疗靶点新型先导化合物的巨大潜力。