Suppr超能文献

介孔硅 MCM-41 应对极端温度:多孔结构转变模拟及气体吸附性能的改性。

Response to Extreme Temperatures of Mesoporous Silica MCM-41: Porous Structure Transformation Simulation and Modification of Gas Adsorption Properties.

机构信息

Lawrence Livermore Laboratory , Livermore, California 94550, United States.

出版信息

Langmuir. 2016 Nov 8;32(44):11422-11431. doi: 10.1021/acs.langmuir.6b02814. Epub 2016 Oct 24.

Abstract

Molecular dynamics (MD) and Monte Carlo (MC) simulations were applied together for the first time to reveal the porous structure transformation mechanisms of mesoporous silica MCM-41 subjected to temperatures up to 2885 K. Silica was experimentally characterized to inform the models and enable prediction of changes in gas adsorption/separation properties. MD simulations suggest that the pore closure process is activated by a collective diffusion of matrix atoms into the porous region, accompanied by bond reformation at the surface. Degradation is kinetically limited, such that complete pore closure is postponed at high heating rates. We experimentally observe decreased gas adsorption with increasing temperature in mesoporous silica heated at fixed rates, due to pore closure and structural degradation consistent with simulation predictions. Applying the Kissinger equation, we find a strong correlation between the simulated pore collapse temperatures and the experimental values which implies an activation energy of 416 ± 17 kJ/mol for pore closure. MC simulations give the adsorption and selectivity for thermally treated MCM-41, for N, Ar, Kr, and Xe at room temperature within the 1-10 000 kPa pressure range. Relative to pristine MCM-41, we observe that increased surface roughness due to decreasing pore size amplifies the difference of the absolute adsorption amount differently for different adsorbate molecules. In particular, we find that adsorption of strongly interacting molecules can be enhanced in the low-pressure region while adsorption of weakly interacting molecules is inhibited. This then results in higher selectivity in binary mixture adsorption in mesoporous silica.

摘要

分子动力学 (MD) 和蒙特卡罗 (MC) 模拟首次被应用于揭示介孔二氧化硅 MCM-41 在高达 2885 K 的温度下的多孔结构转变机制。通过实验对二氧化硅进行了特征化处理,为模型提供信息,并能够预测气体吸附/分离性能的变化。MD 模拟表明,孔封闭过程是通过基质原子集体扩散到多孔区域而激活的,同时在表面进行键的重新形成。降解受到动力学限制,因此在较高的加热速率下,完全的孔封闭会被推迟。我们在以固定速率加热的介孔二氧化硅中实验观察到,随着温度的升高,气体吸附量减少,这与模拟预测的孔封闭和结构降解一致。应用 Kissinger 方程,我们发现模拟的孔塌陷温度与实验值之间存在很强的相关性,这意味着孔封闭的活化能为 416±17 kJ/mol。MC 模拟给出了在室温下处理过的 MCM-41 对 N、Ar、Kr 和 Xe 的吸附和选择性,压力范围为 1-10000 kPa。与原始 MCM-41 相比,我们观察到由于孔径减小导致的表面粗糙度增加,对不同吸附剂分子的绝对吸附量的差异产生不同的放大作用。特别是,我们发现强相互作用分子的吸附在低压区可以增强,而弱相互作用分子的吸附受到抑制。这导致在介孔二氧化硅中二元混合物吸附的选择性更高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验