Suppr超能文献

关于掺杂莫特绝缘体中多体局域化的可能性。

On the possibility of many-body localization in a doped Mott insulator.

作者信息

He Rong-Qiang, Weng Zheng-Yu

机构信息

Institute for Advanced Study, Tsinghua University, Beijing 100084, China.

出版信息

Sci Rep. 2016 Oct 18;6:35208. doi: 10.1038/srep35208.

Abstract

Many-body localization (MBL) is currently a hot issue of interacting systems, in which quantum mechanics overcomes thermalization of statistical mechanics. Like Anderson localization of non-interacting electrons, disorders are usually crucial in engineering the quantum interference in MBL. For translation invariant systems, however, the breakdown of eigenstate thermalization hypothesis due to a pure many-body quantum effect is still unclear. Here we demonstrate a possible MBL phenomenon without disorder, which emerges in a lightly doped Hubbard model with very strong interaction. By means of density matrix renormalization group numerical calculation on a two-leg ladder, we show that whereas a single hole can induce a very heavy Nagaoka polaron, two or more holes will form bound pair/droplets which are all localized excitations with flat bands at low energy densities. Consequently, MBL eigenstates of finite energy density can be constructed as composed of these localized droplets spatially separated. We further identify the underlying mechanism for this MBL as due to a novel 'Berry phase' of the doped Mott insulator, and show that by turning off this Berry phase either by increasing the anisotropy of the model or by hand, an eigenstate transition from the MBL to a conventional quasiparticle phase can be realized.

摘要

多体局域化(MBL)目前是相互作用系统中的一个热点问题,其中量子力学克服了统计力学的热化现象。与非相互作用电子的安德森局域化一样,无序通常对于在多体局域化中设计量子干涉至关重要。然而,对于平移不变系统,由于纯粹的多体量子效应导致的本征态热化假设的失效仍不清楚。在此,我们展示了一种无无序的可能的多体局域化现象,它出现在具有非常强相互作用的轻掺杂哈伯德模型中。通过在两腿梯子上进行密度矩阵重整化群数值计算,我们表明,虽然单个空穴可以诱导出非常重的永冈极化子,但两个或更多空穴会形成束缚对/液滴,它们都是在低能量密度下具有平带的局域激发。因此,有限能量密度的多体局域化本征态可以被构建为由这些在空间上分离的局域液滴组成。我们进一步确定这种多体局域化的潜在机制是由于掺杂莫特绝缘体的一种新颖的“贝里相位”,并且表明通过增加模型的各向异性或手动关闭这个贝里相位,可以实现从多体局域化到传统准粒子相的本征态转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/facb/5067514/dd056d36445d/srep35208-f1.jpg

相似文献

1
On the possibility of many-body localization in a doped Mott insulator.
Sci Rep. 2016 Oct 18;6:35208. doi: 10.1038/srep35208.
2
Thermal inclusions: how one spin can destroy a many-body localized phase.
Philos Trans A Math Phys Eng Sci. 2017 Dec 13;375(2108). doi: 10.1098/rsta.2016.0428.
3
Localization in a t-J-Type Model with Translational Symmetry.
Phys Rev Lett. 2019 Jul 3;123(1):016601. doi: 10.1103/PhysRevLett.123.016601.
4
Strong correlation induced charge localization in antiferromagnets.
Sci Rep. 2013;3:2586. doi: 10.1038/srep02586.
5
Clustering of Nonergodic Eigenstates in Quantum Spin Glasses.
Phys Rev Lett. 2017 Mar 24;118(12):127201. doi: 10.1103/PhysRevLett.118.127201. Epub 2017 Mar 23.
6
Single-quasiparticle eigenstate thermalization.
Phys Rev E. 2024 Feb;109(2-1):024102. doi: 10.1103/PhysRevE.109.024102.
7
Exact Localized and Ballistic Eigenstates in Disordered Chaotic Spin Ladders and the Fermi-Hubbard Model.
Phys Rev Lett. 2019 Jul 19;123(3):036403. doi: 10.1103/PhysRevLett.123.036403.
8
Hole localization in the one-dimensional doped Anderson-Hubbard model.
Phys Rev Lett. 2008 Jul 4;101(1):016407. doi: 10.1103/PhysRevLett.101.016407. Epub 2008 Jul 3.
9
Ergodicity Breaking and Deviation from Eigenstate Thermalization in Relativistic Quantum Field Theory.
Phys Rev Lett. 2024 Jan 12;132(2):021601. doi: 10.1103/PhysRevLett.132.021601.
10
Entanglement and thermodynamic entropy in a clean many-body-localized system.
J Phys Condens Matter. 2020 Jun 10;32(25):255603. doi: 10.1088/1361-648X/ab7c92.

引用本文的文献

本文引用的文献

1
Quasi-Many-Body Localization in Translation-Invariant Systems.
Phys Rev Lett. 2016 Dec 9;117(24):240601. doi: 10.1103/PhysRevLett.117.240601. Epub 2016 Dec 7.
2
Localization and topology protected quantum coherence at the edge of hot matter.
Nat Commun. 2015 Jul 10;6:7341. doi: 10.1038/ncomms8341.
3
Many-body localization in a disordered quantum Ising chain.
Phys Rev Lett. 2014 Sep 5;113(10):107204. doi: 10.1103/PhysRevLett.113.107204. Epub 2014 Sep 4.
4
Nature of strong hole pairing in doped Mott antiferromagnets.
Sci Rep. 2014 Jun 24;4:5419. doi: 10.1038/srep05419.
5
Local conservation laws and the structure of the many-body localized states.
Phys Rev Lett. 2013 Sep 20;111(12):127201. doi: 10.1103/PhysRevLett.111.127201. Epub 2013 Sep 17.
6
Strong correlation induced charge localization in antiferromagnets.
Sci Rep. 2013;3:2586. doi: 10.1038/srep02586.
7
Phases of the infinite U Hubbard model on square lattices.
Phys Rev Lett. 2012 Mar 23;108(12):126406. doi: 10.1103/PhysRevLett.108.126406. Epub 2012 Mar 22.
8
Localization of toric code defects.
Phys Rev Lett. 2011 Jul 15;107(3):030504. doi: 10.1103/PhysRevLett.107.030504. Epub 2011 Jul 14.
9
Bringing order through disorder: localization of errors in topological quantum memories.
Phys Rev Lett. 2011 Jul 15;107(3):030503. doi: 10.1103/PhysRevLett.107.030503. Epub 2011 Jul 14.
10
Fragile Mott insulators.
Phys Rev Lett. 2010 Oct 15;105(16):166402. doi: 10.1103/PhysRevLett.105.166402. Epub 2010 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验