从富勒烯-聚合物到全聚合物太阳能电池:分子堆积、取向和形态控制的重要性。

From Fullerene-Polymer to All-Polymer Solar Cells: The Importance of Molecular Packing, Orientation, and Morphology Control.

机构信息

Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 305-701, Republic of Korea.

出版信息

Acc Chem Res. 2016 Nov 15;49(11):2424-2434. doi: 10.1021/acs.accounts.6b00347. Epub 2016 Oct 18.

Abstract

All-polymer solar cells (all-PSCs), consisting of conjugated polymers as both electron donor (P) and acceptor (P), have recently attracted great attention. Remarkable progress has been achieved during the past few years, with power conversion efficiencies (PCEs) now approaching 8%. In this Account, we first discuss the major advantages of all-PSCs over fullerene-polymer solar cells (fullerene-PSCs): (i) high light absorption and chemical tunability of P, which affords simultaneous enhancement of both the short-circuit current density (J) and the open-circuit voltage (V), and (ii) superior long-term stability (in particular, thermal and mechanical stability) of all-PSCs due to entangled long P chains. In the second part of this Account, we discuss the device operation mechanism of all-PSCs and recognize the major challenges that need to be addressed in optimizing the performance of all-PSCs. The major difference between all-PSCs and fullerene-PSCs originates from the molecular structures and interactions, i.e., the electron transport ability in all-PSCs is significantly affected by the packing geometry of two-dimensional P chains relative to the electrodes (e.g., face-on or edge-on orientation), whereas spherically shaped fullerene acceptors can facilitate isotropic electron transport properties in fullerene-PSCs. Moreover, the crystalline packing structures of P and P at the P-P interface greatly affect their free charge carrier generation efficiencies. The design of P polymers (e.g., main backbone, side chain, and molecular weight) should therefore take account of optimizing three major aspects in all-PSCs: (1) the electron transport ability of P, (2) the molecular packing structure and orientation of P, and (3) the blend morphology. First, control of the backbone and side-chain structures, as well as the molecular weight, is critical for generating strong intermolecular assembly of P and its network, thus enabling high electron transport ability of P comparable to that of fullerenes. Second, the molecular orientation of anisotropically structured P should be favorably controlled in order to achieve efficient charge transport as well as charge transfer at the P-P interface. For instance, face-to-face stacking between P and P at the interface is desired for efficient free charge carrier generation because misoriented chains often cause an additional energy barrier for overcoming the binding energy of the charge transfer state. Third, large-scale phase separation often occurs in all-PSCs because of the significantly reduced entropic contribution by two macromolecular chains of P and P that energetically disfavors mixing. In this Account, we review the recent progress toward overcoming each recognized challenge and intend to provide guidelines for the future design of P. We believe that by optimization of the parameters discussed above the PCE values of all-PSCs will surpass the 10% level in the near future and that all-PSCs are promising candidates for the successful realization of flexible and portable power generators.

摘要

全聚合物太阳能电池(all-PSCs)由共轭聚合物作为电子给体(P)和受体(P)组成,最近引起了极大的关注。在过去的几年中,已经取得了显著的进展,其功率转换效率(PCE)现在接近 8%。在本报告中,我们首先讨论了全聚合物太阳能电池相对于富勒烯聚合物太阳能电池(fullerene-PSCs)的主要优势:(i)P 的高光吸收和化学可调性,这同时提高了短路电流密度(J)和开路电压(V),(ii)由于纠缠的长 P 链,全聚合物太阳能电池具有优异的长期稳定性(特别是热稳定性和机械稳定性)。在本报告的第二部分,我们讨论了全聚合物太阳能电池的器件工作机制,并认识到需要解决的主要挑战,以优化全聚合物太阳能电池的性能。全聚合物太阳能电池和富勒烯聚合物太阳能电池之间的主要区别源于分子结构和相互作用,即二维 P 链相对于电极的堆积几何形状(例如,面朝上或边缘朝上取向)显著影响全聚合物太阳能电池的电子传输能力,而球形富勒烯受体可以促进富勒烯聚合物太阳能电池中各向同性的电子传输性质。此外,P 和 P 在 P-P 界面处的结晶堆积结构极大地影响了它们的自由电荷载流子产生效率。因此,P 聚合物的设计(例如主链、侧链和分子量)应考虑优化全聚合物太阳能电池的三个主要方面:(1)P 的电子传输能力,(2)P 的分子堆积结构和取向,以及(3)共混形态。首先,控制主链和侧链结构以及分子量对于产生 P 的强分子间组装及其网络至关重要,从而使 P 的电子传输能力与富勒烯相当。其次,应该有利地控制各向异性结构 P 的分子取向,以实现有效的电荷传输以及 P-P 界面处的电荷转移。例如,界面处 P 和 P 之间的面对面堆积有利于高效的自由电荷载流子产生,因为错位链通常会导致克服电荷转移态结合能的额外能垒。第三,由于 P 和 P 的两个大分子链的熵贡献显著降低,能量上不利于混合,因此全聚合物太阳能电池中经常发生大规模的相分离。在本报告中,我们综述了克服每个已识别挑战的最新进展,并旨在为未来的 P 设计提供指导。我们相信,通过优化上述参数,全聚合物太阳能电池的 PCE 值将在不久的将来超过 10%,并且全聚合物太阳能电池是成功实现柔性和便携式发电机的有前途的候选者。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索