Suppr超能文献

气候降尺度技术和观测数据集对模拟生态响应的影响。

The effects of climate downscaling technique and observational data set on modeled ecological responses.

作者信息

Pourmokhtarian Afshin, Driscoll Charles T, Campbell John L, Hayhoe Katharine, Stoner Anne M K

机构信息

Department of Civil and Environmental Engineering, Syracuse University, Syracuse, New York 13244, USA.

US Forest Service, Northern Research Station, Durham, New Hampshire 03824, USA.

出版信息

Ecol Appl. 2016 Jul;26(5):1321-1337. doi: 10.1890/15-0745.

Abstract

Assessments of future climate change impacts on ecosystems typically rely on multiple climate model projections, but often utilize only one downscaling approach trained on one set of observations. Here, we explore the extent to which modeled biogeochemical responses to changing climate are affected by the selection of the climate downscaling method and training observations used at the montane landscape of the Hubbard Brook Experimental Forest, New Hampshire, USA. We evaluated three downscaling methods: the delta method (or the change factor method), monthly quantile mapping (Bias Correction-Spatial Disaggregation, or BCSD), and daily quantile regression (Asynchronous Regional Regression Model, or ARRM). Additionally, we trained outputs from four atmosphere-ocean general circulation models (AOGCMs) (CCSM3, HadCM3, PCM, and GFDL-CM2.1) driven by higher (A1fi) and lower (B1) future emissions scenarios on two sets of observations (1/8º resolution grid vs. individual weather station) to generate the high-resolution climate input for the forest biogeochemical model PnET-BGC (eight ensembles of six runs).The choice of downscaling approach and spatial resolution of the observations used to train the downscaling model impacted modeled soil moisture and streamflow, which in turn affected forest growth, net N mineralization, net soil nitrification, and stream chemistry. All three downscaling methods were highly sensitive to the observations used, resulting in projections that were significantly different between station-based and grid-based observations. The choice of downscaling method also slightly affected the results, however not as much as the choice of observations. Using spatially smoothed gridded observations and/or methods that do not resolve sub-monthly shifts in the distribution of temperature and/or precipitation can produce biased results in model applications run at greater temporal and/or spatial resolutions. These results underscore the importance of carefully considering field observations used for training, as well as the downscaling method used to generate climate change projections, for smaller-scale modeling studies. Different sources of variability including selection of AOGCM, emissions scenario, downscaling technique, and data used for training downscaling models, result in a wide range of projected forest ecosystem responses to future climate change.

摘要

对未来气候变化对生态系统影响的评估通常依赖于多个气候模型预测,但往往仅采用基于一组观测数据训练的一种降尺度方法。在此,我们探讨在美国新罕布什尔州哈伯德布鲁克实验森林的山地景观中,气候降尺度方法的选择以及所使用的训练观测数据对模拟的生物地球化学对气候变化的响应影响程度。我们评估了三种降尺度方法:德尔塔方法(或变化因子方法)、月度分位数映射(偏差校正 - 空间分解,或BCSD)和日度分位数回归(异步区域回归模型,或ARRM)。此外,我们使用两组观测数据(1/8º分辨率网格与单个气象站)对由较高(A1fi)和较低(B1)未来排放情景驱动的四个大气 - 海洋通用环流模型(AOGCMs)(CCSM3、HadCM3、PCM和GFDL - CM2.1)的输出进行训练,以生成用于森林生物地球化学模型PnET - BGC的高分辨率气候输入数据(六个运行的八个集合)。降尺度方法的选择以及用于训练降尺度模型的观测数据的空间分辨率影响了模拟的土壤湿度和径流,进而影响了森林生长、净氮矿化、土壤净硝化作用和溪流化学性质。所有三种降尺度方法对所使用的观测数据都高度敏感,导致基于站点和基于网格的观测数据之间的预测存在显著差异。降尺度方法的选择也对结果略有影响,然而其影响程度不如观测数据的选择。在以更高的时间和/或空间分辨率运行的模型应用中,使用空间平滑的网格化观测数据和/或无法解析温度和/或降水分布的亚月度变化的方法可能会产生有偏差的结果。这些结果强调了在较小尺度建模研究中仔细考虑用于训练的实地观测数据以及用于生成气候变化预测的降尺度方法的重要性。包括AOGCM的选择、排放情景、降尺度技术以及用于训练降尺度模型的数据在内的不同变异性来源,导致了对未来气候变化的森林生态系统响应的广泛预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验