Suppr超能文献

评估用于反映中风后个体步行速度变化的推进力测量方法。

Evaluation of measurements of propulsion used to reflect changes in walking speed in individuals poststroke.

作者信息

Hsiao HaoYuan, Zabielski Thomas M, Palmer Jacqueline A, Higginson Jill S, Binder-Macleod Stuart A

机构信息

Biomechanics and Movement Science Program, University of Delaware, DE 19716, United States.

Department of Kinesiology and Applied Physiology, University of Delaware, DE 19716, United States.

出版信息

J Biomech. 2016 Dec 8;49(16):4107-4112. doi: 10.1016/j.jbiomech.2016.10.003. Epub 2016 Oct 8.

Abstract

Recent rehabilitation approaches for individuals poststroke have focused on improving walking speed because it is a reliable measurement that is associated with quality of life. Previous studies have demonstrated that propulsion, the force used to propel the body forward, determines walking speed. However, there are several different ways of measuring propulsion and no studies have identified which measurement best reflects differences in walking speed. The primary purposes of this study were to determine for individuals poststroke, which measurement of propulsion (1) is most closely related to their self-selected walking speeds and (2) best reflects changes in walking speed within a session. Participants (N=43) with chronic poststroke hemiparesis walked at their self-selected and maximal walking speeds on a treadmill. Propulsive impulse, peak propulsive force, and mean propulsive value (propulsive impulse divided by duration) were analyzed. In addition, each participant׳s cadence was calculated. Pearson correlation coefficients were used to determine the relationships between different measurements of propulsion versus walking speed as well as changes in propulsion versus changes in walking speed. Stepwise linear regression was used to determine which measurement of propulsion best predicted walking speed and changes in walking speed. The results showed that all 3 measurements of propulsion were correlated to walking speed, with peak propulsive force showed the strongest correlation. Similarly, when participants increased their walking speeds, changes in peak propulsive forces showed the strongest correlation to changes in walking speed. In addition, multiplying each measurement by cadence improved the correlations. The present study suggests that measuring peak propulsive force and cadence may be most appropriate of the variables studied to characterize propulsion in individuals poststroke.

摘要

近期针对中风后个体的康复方法聚焦于提高步行速度,因为它是一项与生活质量相关的可靠指标。先前的研究表明,推进力,即用于推动身体向前的力量,决定步行速度。然而,测量推进力有几种不同的方法,且尚无研究确定哪种测量方法最能反映步行速度的差异。本研究的主要目的是为中风后个体确定,哪种推进力测量方法(1)与他们自我选择的步行速度最密切相关,以及(2)最能反映一次训练中步行速度的变化。患有慢性中风后偏瘫的参与者(N = 43)在跑步机上以自我选择的速度和最大步行速度行走。分析了推进冲量、峰值推进力和平均推进值(推进冲量除以持续时间)。此外,计算了每位参与者的步频。使用皮尔逊相关系数来确定推进力的不同测量值与步行速度之间的关系,以及推进力的变化与步行速度的变化之间的关系。采用逐步线性回归来确定哪种推进力测量方法最能预测步行速度和步行速度的变化。结果表明,推进力的所有三种测量值均与步行速度相关,其中峰值推进力的相关性最强。同样,当参与者提高步行速度时,峰值推进力的变化与步行速度的变化相关性最强。此外,将每个测量值乘以步频可提高相关性。本研究表明,测量峰值推进力和步频可能是在所研究的变量中最适合用于表征中风后个体推进力的方法。

相似文献

1
Evaluation of measurements of propulsion used to reflect changes in walking speed in individuals poststroke.
J Biomech. 2016 Dec 8;49(16):4107-4112. doi: 10.1016/j.jbiomech.2016.10.003. Epub 2016 Oct 8.
2
Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
Neurorehabil Neural Repair. 2016 Sep;30(8):743-52. doi: 10.1177/1545968315624780. Epub 2015 Dec 31.
3
Baseline predictors of treatment gains in peak propulsive force in individuals poststroke.
J Neuroeng Rehabil. 2016 Jan 15;13:2. doi: 10.1186/s12984-016-0113-1.
4
The Presence of a Paretic Propulsion Reserve During Gait in Individuals Following Stroke.
Neurorehabil Neural Repair. 2018 Dec;32(12):1011-1019. doi: 10.1177/1545968318809920.
5
Adaptive treadmill control can be manipulated to increase propulsive impulse while maintaining walking speed.
J Biomech. 2022 Mar;133:110971. doi: 10.1016/j.jbiomech.2022.110971. Epub 2022 Jan 28.
6
Limb contribution to increased self-selected walking speeds during body weight support in individuals poststroke.
Gait Posture. 2015 Mar;41(3):857-9. doi: 10.1016/j.gaitpost.2015.02.004. Epub 2015 Feb 25.
7
Mechanisms used to increase peak propulsive force following 12-weeks of gait training in individuals poststroke.
J Biomech. 2016 Feb 8;49(3):388-95. doi: 10.1016/j.jbiomech.2015.12.040. Epub 2015 Dec 31.
8
Control of lateral weight transfer is associated with walking speed in individuals post-stroke.
J Biomech. 2017 Jul 26;60:72-78. doi: 10.1016/j.jbiomech.2017.06.021. Epub 2017 Jun 23.
9
Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking.
Arch Phys Med Rehabil. 2007 Sep;88(9):1127-35. doi: 10.1016/j.apmr.2007.05.027.
10
Mechanisms to increase propulsive force for individuals poststroke.
J Neuroeng Rehabil. 2015 Apr 18;12:40. doi: 10.1186/s12984-015-0030-8.

引用本文的文献

1
Walking speed can be modulated on an adaptive split-belt treadmill.
bioRxiv. 2025 Jun 7:2025.06.03.657157. doi: 10.1101/2025.06.03.657157.
3
Gait speed-dependent modulation of paretic versus non-paretic propulsion in persons with chronic stroke.
J Neuroeng Rehabil. 2025 May 8;22(1):108. doi: 10.1186/s12984-025-01620-0.
4
Within-session propulsion asymmetry changes have a limited effect on gait asymmetry post-stroke.
J Neuroeng Rehabil. 2025 Jan 22;22(1):9. doi: 10.1186/s12984-025-01553-8.
6
Adaptive Functional Electrical Stimulation Delivers Stimulation Amplitudes Based on Real-Time Gait Biomechanics.
J Med Device. 2024 Jun 1;18(2):021002. doi: 10.1115/1.4065479. Epub 2024 May 21.
7
Paretic propulsion changes with handrail Use in individuals post-stroke.
Heliyon. 2024 Feb 27;10(5):e26924. doi: 10.1016/j.heliyon.2024.e26924. eCollection 2024 Mar 15.
8
Effects of backward-directed resistance on propulsive force generation during split-belt treadmill walking in non-impaired individuals.
Front Hum Neurosci. 2023 Dec 4;17:1214967. doi: 10.3389/fnhum.2023.1214967. eCollection 2023.
9
Simulations suggest walking with reduced propulsive force would not mitigate the energetic consequences of lower tendon stiffness.
PLoS One. 2023 Oct 26;18(10):e0293331. doi: 10.1371/journal.pone.0293331. eCollection 2023.
10
How Important is Position in Adaptive Treadmill Control?
J Biomech Eng. 2024 Jan 1;146(1). doi: 10.1115/1.4063823.

本文引用的文献

1
Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
Neurorehabil Neural Repair. 2016 Sep;30(8):743-52. doi: 10.1177/1545968315624780. Epub 2015 Dec 31.
2
Effect of walking speed on gait sub phase durations.
Hum Mov Sci. 2015 Oct;43:118-24. doi: 10.1016/j.humov.2015.07.009. Epub 2015 Aug 6.
3
Ground reaction forces of Olympic and World Championship race walkers.
Eur J Sport Sci. 2016;16(1):50-6. doi: 10.1080/17461391.2014.984769. Epub 2014 Nov 27.
4
Paretic Propulsion and Trailing Limb Angle Are Key Determinants of Long-Distance Walking Function After Stroke.
Neurorehabil Neural Repair. 2015 Jul;29(6):499-508. doi: 10.1177/1545968314554625. Epub 2014 Nov 10.
5
Motor learning during poststroke gait rehabilitation: a case study.
J Neurol Phys Ther. 2014 Jul;38(3):183-9. doi: 10.1097/NPT.0000000000000047.
6
Targeting paretic propulsion to improve poststroke walking function: a preliminary study.
Arch Phys Med Rehabil. 2014 May;95(5):840-8. doi: 10.1016/j.apmr.2013.12.012. Epub 2013 Dec 28.
7
Heart disease and stroke statistics--2014 update: a report from the American Heart Association.
Circulation. 2014 Jan 21;129(3):e28-e292. doi: 10.1161/01.cir.0000441139.02102.80. Epub 2013 Dec 18.
8
Real-time feedback enhances forward propulsion during walking in old adults.
Clin Biomech (Bristol). 2014 Jan;29(1):68-74. doi: 10.1016/j.clinbiomech.2013.10.018. Epub 2013 Oct 30.
10
Interlimb coordination during the stance phase of gait in subjects with stroke.
Arch Phys Med Rehabil. 2013 Dec;94(12):2515-2522. doi: 10.1016/j.apmr.2013.06.032. Epub 2013 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验