Jurek Anne M, Maldonado George
Division of Environmental Health Sciences, University of Minnesota School of Public Health, Minneapolis.
Division of Environmental Health Sciences, University of Minnesota School of Public Health, Minneapolis.
Ann Epidemiol. 2016 Nov;26(11):794-801. doi: 10.1016/j.annepidem.2016.09.002. Epub 2016 Sep 21.
When learning bias analysis, epidemiologists are taught to quantitatively adjust for multiple biases by correcting study results in the reverse order of the error sequence. To understand the error sequence for a particular study, one must carefully examine the health study's epidemiologic data-generating process. In this article, we describe the unique data-generating process of a man-made disaster epidemiologic study.
We described the data-generating process and conducted a bias analysis for a study associating September 11, 2001 dust cloud exposure and self-reported newly physician-diagnosed asthma among rescue-recovery workers and volunteers. We adjusted an odds ratio (OR) estimate for the combined effect of missing data, outcome misclassification, and nonparticipation.
Under our assumptions about systematic error, the ORs adjusted for all three biases ranged from 1.33 to 3.84. Most of the adjusted estimates were greater than the observed OR of 1.77 and were outside the 95% confidence limits (1.55, 2.01).
Man-made disasters present some situations that are not observed in other areas of epidemiology. Future epidemiologic studies of disasters could benefit from a proactive approach that focuses on the technical aspect of data collection and gathers information on bias parameters to provide more meaningful interpretations of results.
在学习偏倚分析时,流行病学家们被教导要通过按照误差序列的相反顺序校正研究结果来对多种偏倚进行定量调整。为了理解特定研究的误差序列,必须仔细检查健康研究的流行病学数据生成过程。在本文中,我们描述了一项人为灾难流行病学研究独特的数据生成过程。
我们描述了数据生成过程,并对一项将2001年9月11日尘埃云暴露与救援-恢复工作人员及志愿者中自我报告的新诊断哮喘关联起来的研究进行了偏倚分析。我们针对缺失数据、结局错误分类和未参与的综合效应调整了比值比(OR)估计值。
在我们关于系统误差的假设下,针对所有三种偏倚调整后的OR值范围为1.33至3.84。大多数调整后的估计值大于观察到的OR值1.77,且不在95%置信区间(1.55,2.01)内。
人为灾难呈现出一些在流行病学其他领域未观察到的情况。未来关于灾难的流行病学研究可能会受益于一种积极主动的方法,该方法侧重于数据收集的技术方面,并收集有关偏倚参数的信息,以便对结果进行更有意义的解释。