Lovelace Respiratory Research Institute, Albuquerque, New Mexico.
Radical Therapeutics, West Tisbury, Massachusetts.
Cancer Res. 2016 Dec 15;76(24):7130-7139. doi: 10.1158/0008-5472.CAN-16-1052. Epub 2016 Oct 18.
Tuberous sclerosis complex (TSC) is a genetic multiorgan disorder characterized by the development of neoplastic lesions in kidney, lung, brain, heart, and skin. It is caused by an inactivating mutation in tumor suppressor genes coding the TSC1/TSC2 complex, resulting in the hyperactivation of mTOR- and Raf/MEK/MAPK-dependent signaling that stimulates tumor cell proliferation and metastasis. Despite its oncogenic effect, cells with TSC deficiency were more sensitive to oxidative stress and dependent on mitochondrial metabolism, providing a rationale for a new therapeutic approach. The current study shows that simultaneous inhibition of two major pathways regulating redox homeostasis using l-buthionine-sulfoximine (BSO, glutathione synthesis inhibitor) and auranofin (thioredoxin reductase inhibitor) induces oxidative burst, mitochondrial damage, and necrotic cell death in TSC-deficient cells in a highly synergistic and cell context-specific manner. Furthermore, blocking RIP1/RIP3/MLKL-dependent signaling using chemical inhibitors necrostatin-1 (Nec-1) and necrosulfonamide (NSA) synergizes with BSO and auranofin in killing TSC-deficient cells. Expression analysis demonstrated that RIP1, RIP3, and MLKL protein levels are elevated in cells with TSC2 deficiency, and their inactivation enhances mitochondrial dysfunction in a glutaminolysis-dependent and autophagy-independent manner. Finally, supplementation with the mitochondrial metabolite α-ketoglutarate, whose synthesis is regulated by RIP1/RIP3/MLKL, rescues cells from the sensitizing effect of Nec-1 and NSA. Together, this study identifies a previously unrecognized novel regulated necrotic death pathway that involves mitochondrial homeostasis, is suppressed by the RIP1/RIP3/MLKL signaling in TSC-deficient cells, and could be a promising therapeutic target for TSC-associated tumors. Cancer Res; 76(24); 7130-9. ©2016 AACR.
结节性硬化症复合征(TSC)是一种遗传性多器官疾病,其特征是肾脏、肺、脑、心脏和皮肤中出现肿瘤病变。它是由肿瘤抑制基因 TSC1/TSC2 复合物的失活突变引起的,导致 mTOR 和 Raf/MEK/MAPK 依赖性信号通路的过度激活,从而刺激肿瘤细胞增殖和转移。尽管它具有致癌作用,但 TSC 缺陷细胞对氧化应激更敏感,并依赖于线粒体代谢,这为新的治疗方法提供了依据。本研究表明,同时抑制两种主要的调节氧化还原平衡的途径,使用 L-丁硫氨酸亚砜亚胺(BSO,谷胱甘肽合成抑制剂)和金诺芬(硫氧还蛋白还原酶抑制剂),以高度协同和细胞特异性的方式诱导 TSC 缺陷细胞中的氧化爆发、线粒体损伤和坏死性细胞死亡。此外,使用化学抑制剂 Nec-1 和 Necrostatin-1(NSA)阻断 RIP1/RIP3/MLKL 依赖性信号通路,与 BSO 和金诺芬联合使用,可协同杀死 TSC 缺陷细胞。表达分析表明,在 TSC2 缺陷的细胞中,RIP1、RIP3 和 MLKL 蛋白水平升高,它们的失活以谷氨酰胺分解依赖和自噬非依赖的方式增强线粒体功能障碍。最后,补充线粒体代谢物 α-酮戊二酸,其合成受 RIP1/RIP3/MLKL 调节,可挽救细胞免受 Nec-1 和 NSA 的致敏作用。总之,本研究确定了一种以前未被识别的新的调控性坏死死亡途径,该途径涉及线粒体稳态,在 TSC 缺陷细胞中受 RIP1/RIP3/MLKL 信号的抑制,可能成为 TSC 相关肿瘤的有前途的治疗靶点。癌症研究;76(24);7130-9。©2016AACR。