The Institute for Molecular Engineering, the University of Chicago, Chicago, IL 60637, USA.
The Institute for Molecular Engineering, the University of Chicago, Chicago, IL 60637, USA.; Argonne National Laboratory, Argonne, IL 60439, USA.
Sci Adv. 2016 Oct 12;2(10):e1601278. doi: 10.1126/sciadv.1601278. eCollection 2016 Oct.
Investigating the fate of dissolved carbon dioxide under extreme conditions is critical to understanding the deep carbon cycle in Earth, a process that ultimately influences global climate change. We used first-principles molecular dynamics simulations to study carbonates and carbon dioxide dissolved in water at pressures () and temperatures () approximating the conditions of Earth's upper mantle. Contrary to popular geochemical models assuming that molecular CO(aq) is the major carbon species present in water under deep Earth conditions, we found that at 11 GPa and 1000 K, carbon exists almost entirely in the forms of solvated carbonate ([Formula: see text]) and bicarbonate ([Formula: see text]) ions and that even carbonic acid [HCO(aq)] is more abundant than CO(aq). Furthermore, our simulations revealed that ion pairing between Na and [Formula: see text]/[Formula: see text] is greatly affected by - conditions, decreasing with increasing pressure at 800 to 1000 K. Our results suggest that in Earth's upper mantle, water-rich geofluids transport a majority of carbon in the form of rapidly interconverting [Formula: see text] and [Formula: see text] ions, not solvated CO(aq) molecules.
研究极端条件下溶解二氧化碳的命运对于了解地球深部碳循环至关重要,这一过程最终会影响全球气候变化。我们使用第一性原理分子动力学模拟研究了压力为 () 和温度为 () 的碳酸盐和溶解在水中的二氧化碳,这些条件近似于地球上地幔的条件。与普遍的地球化学模型假设在地球深部条件下,水中主要的碳物种是分子 CO(aq) 不同,我们发现,在 11 GPa 和 1000 K 时,碳几乎完全以溶剂化碳酸盐 ([Formula: see text]) 和碳酸氢盐 ([Formula: see text]) 离子的形式存在,甚至碳酸 [HCO(aq)] 的丰度也高于 CO(aq)。此外,我们的模拟表明,Na 与 [Formula: see text]/[Formula: see text] 的离子对在 - 条件下受到很大影响,在 800 到 1000 K 时随压力的增加而减少。我们的结果表明,在上地幔中,富含水的地球流体以快速相互转化的 [Formula: see text] 和 [Formula: see text] 离子的形式而不是溶剂化的 CO(aq) 分子来输送大部分碳。