Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom.
Proc Natl Acad Sci U S A. 2013 Sep 24;110(39):15591-6. doi: 10.1073/pnas.1308560110. Epub 2013 Sep 6.
The hydrogen bond (HB) is central to our understanding of the properties of water. However, despite intense theoretical and experimental study, it continues to hold some surprises. Here, we show from an analysis of ab initio simulations that take proper account of nuclear quantum effects that the hydrogen-bonded protons in liquid water experience significant excursions in the direction of the acceptor oxygen atoms. This generates a small but nonnegligible fraction of transient autoprotolysis events that are not seen in simulations with classical nuclei. These events are associated with major rearrangements of the electronic density, as revealed by an analysis of the computed Wannier centers and (1)H chemical shifts. We also show that the quantum fluctuations exhibit significant correlations across neighboring HBs, consistent with an ephemeral shuttling of protons along water wires. We end by suggesting possible implications for our understanding of how perturbations (solvated ions, interfaces, and confinement) might affect the HB network in water.
氢键(HB)是我们理解水性质的核心。然而,尽管进行了深入的理论和实验研究,它仍然存在一些惊喜。在这里,我们通过分析充分考虑核量子效应的从头算模拟表明,液态水中氢键的质子在朝着受体氧原子的方向上经历了显著的偏移。这产生了一小部分但不可忽视的瞬态自动离解事件,这些事件在使用经典原子核的模拟中是看不到的。这些事件与电子密度的重大重排有关,这可以通过分析计算的 Wannier 中心和(1)H 化学位移来揭示。我们还表明,量子涨落在相邻氢键之间表现出显著的相关性,这与质子沿着水分子链瞬间迁移一致。最后,我们提出了可能对我们理解扰动(溶剂化离子、界面和限制)如何影响水中氢键网络的影响的一些建议。