Suppr超能文献

相似文献

2
Promoting Surface-Mediated Oxygen Reduction Reaction of Solid Catalysts in Metal-O Batteries by Capturing Superoxide Species.
J Am Chem Soc. 2019 Apr 17;141(15):6263-6270. doi: 10.1021/jacs.8b13568. Epub 2019 Apr 3.
3
Influence of Binders and Solvents on Stability of Ru/RuO Nanoparticles on ITO Nanocrystals as Li-O Battery Cathodes.
ChemSusChem. 2017 Feb 8;10(3):575-586. doi: 10.1002/cssc.201601301. Epub 2017 Jan 23.
4
Doped lanthanum nickelates with a layered perovskite structure as bifunctional cathode catalysts for rechargeable metal-air batteries.
ACS Appl Mater Interfaces. 2013 Oct 23;5(20):9902-7. doi: 10.1021/am403244k. Epub 2013 Sep 23.
5
Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery.
ChemSusChem. 2015 Feb;8(4):600-2. doi: 10.1002/cssc.201403338. Epub 2015 Jan 29.
6
Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte.
Nat Chem. 2010 Sep;2(9):760-5. doi: 10.1038/nchem.763. Epub 2010 Aug 8.
7
Towards Synergistic Electrode-Electrolyte Design Principles for Nonaqueous Li-O[Formula: see text] batteries.
Top Curr Chem (Cham). 2018 Mar 20;376(2):11. doi: 10.1007/s41061-018-0188-1.
8
A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety.
ChemSusChem. 2016 Sep 8;9(17):2391-6. doi: 10.1002/cssc.201600536. Epub 2016 Aug 3.
9
10
Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries.
J Am Chem Soc. 2011 Nov 30;133(47):19048-51. doi: 10.1021/ja208608s. Epub 2011 Nov 8.

引用本文的文献

1
Matrix regulation: a plug-and-tune method for combinatorial regulation in Saccharomyces cerevisiae.
Nat Commun. 2025 Aug 15;16(1):7624. doi: 10.1038/s41467-025-62886-5.
2
Compartmentalization of heme biosynthetic pathways into yeast mitochondria enhances heme production.
NPJ Sci Food. 2025 May 22;9(1):83. doi: 10.1038/s41538-025-00453-4.
4
Recent Progress of Halide Redox Mediators in Lithium-Oxygen Batteries: Functions, Challenges, and Perspectives.
Chem Bio Eng. 2024 Apr 2;1(9):737-756. doi: 10.1021/cbe.4c00025. eCollection 2024 Oct 24.
5
Synergistic increase in coproporphyrin III biosynthesis by mitochondrial compartmentalization in engineered .
Synth Syst Biotechnol. 2024 Jul 14;9(4):834-841. doi: 10.1016/j.synbio.2024.07.001. eCollection 2024 Dec.
6
A biospecies-derived genomic DNA hybrid gel electrolyte for electrochemical energy storage.
PNAS Nexus. 2024 May 30;3(6):pgae213. doi: 10.1093/pnasnexus/pgae213. eCollection 2024 Jun.
7
Genome-scale modeling drives 70-fold improvement of intracellular heme production in .
Proc Natl Acad Sci U S A. 2022 Jul 26;119(30):e2108245119. doi: 10.1073/pnas.2108245119. Epub 2022 Jul 18.
8
designed peptides form a highly catalytic ordered nanoarchitecture on a graphite surface.
Nanoscale. 2022 Jun 16;14(23):8326-8331. doi: 10.1039/d2nr01507b.
9
Redox mediators for high-performance lithium-oxygen batteries.
Natl Sci Rev. 2022 Mar 4;9(4):nwac040. doi: 10.1093/nsr/nwac040. eCollection 2022 Apr.
10
A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism.
Sci Adv. 2022 Jan 21;8(3):eabm1899. doi: 10.1126/sciadv.abm1899.

本文引用的文献

1
A New Design Strategy for Observing Lithium Oxide Growth-Evolution Interactions Using Geometric Catalyst Positioning.
Nano Lett. 2016 Aug 10;16(8):4799-806. doi: 10.1021/acs.nanolett.6b00856. Epub 2016 Jul 5.
2
A Highly Active Low Voltage Redox Mediator for Enhanced Rechargeability of Lithium-Oxygen Batteries.
ACS Cent Sci. 2015 Dec 23;1(9):510-5. doi: 10.1021/acscentsci.5b00267. Epub 2015 Nov 23.
3
Pt and Pd catalyzed oxidation of Li2O2 and DMSO during Li-O2 battery charging.
Chem Commun (Camb). 2016 May 5;52(39):6605-8. doi: 10.1039/c6cc01778a.
4
A lithium-oxygen battery based on lithium superoxide.
Nature. 2016 Jan 21;529(7586):377-82. doi: 10.1038/nature16484. Epub 2016 Jan 11.
5
A Search for the Optimum Lithium Rich Layered Metal Oxide Cathode Material for Li-Ion Batteries.
J Electrochem Soc. 2015;162(7):A1236-A1245. doi: 10.1149/2.0481507jes. Epub 2015 Apr 9.
6
Raman Evidence for Late Stage Disproportionation in a Li-O2 Battery.
J Phys Chem Lett. 2014 Aug 7;5(15):2705-10. doi: 10.1021/jz501323n. Epub 2014 Jul 28.
7
Three dimensionally ordered mesoporous carbon as a stable, high-performance Li-O₂ battery cathode.
Angew Chem Int Ed Engl. 2015 Mar 27;54(14):4299-303. doi: 10.1002/anie.201410786. Epub 2015 Feb 10.
8
Enabling catalytic oxidation of Li2O2 at the liquid-solid interface: the evolution of an aprotic Li-O2 battery.
ChemSusChem. 2015 Feb;8(4):600-2. doi: 10.1002/cssc.201403338. Epub 2015 Jan 29.
9
Porphyrins at interfaces.
Nat Chem. 2015 Feb;7(2):105-20. doi: 10.1038/nchem.2159.
10
A mesoporous catalytic membrane architecture for lithium-oxygen battery systems.
Nano Lett. 2015 Jan 14;15(1):434-41. doi: 10.1021/nl503760n. Epub 2014 Dec 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验