Guo Qidi, Xu Jiaqi, Li Jiacun, Tang Shuyan, Cheng Yuhui, Gao Bei, Xiong Liang-Bin, Xiong Jie, Wang Feng-Qing, Wei Dong-Zhi
State Key Lab of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
Synth Syst Biotechnol. 2024 Jul 14;9(4):834-841. doi: 10.1016/j.synbio.2024.07.001. eCollection 2024 Dec.
Coproporphyrin III (CP III), a natural porphyrin derivative, has extensive applications in the biomedical and material industries. has previously been engineered to highly accumulate the CP III precursor 5-aminolevulinic acid (ALA) through the C4 pathway. In this study, a combination of cytoplasmic metabolic engineering and mitochondrial compartmentalization was used to enhance CP III production in . By integrating pathway genes into the chromosome, the CP III titer gradually increased to 32.5 ± 0.5 mg/L in shake flask cultivation. Nevertheless, increasing the copy number of pathway genes did not consistently enhance CP III synthesis. Hence, the partial synthesis pathway was compartmentalized in mitochondria to evaluate its effectiveness in increasing CP III production. Subsequently, by superimposing the mitochondrial compartmentalization strategy on cytoplasmic metabolic engineered strains, the CP III titer was increased to 64.3 ± 1.9 mg/L. Furthermore, augmenting antioxidant pathway genes to reduce reactive oxygen species (ROS) levels effectively improved the growth of engineered strains, resulting in a further increase in the CP III titer to 82.9 ± 1.4 mg/L. Fed-batch fermentations in a 5 L bioreactor achieved a titer of 402.8 ± 9.3 mg/L for CP III. This study provides a new perspective on engineered yeast for the microbial production of porphyrins.
粪卟啉原III(CP III)是一种天然卟啉衍生物,在生物医学和材料工业中有着广泛的应用。此前已通过C4途径对其进行工程改造,以大量积累CP III前体5-氨基乙酰丙酸(ALA)。在本研究中,采用细胞质代谢工程和线粒体区室化相结合的方法来提高CP III在(此处原文缺失具体对象)中的产量。通过将途径基因整合到染色体中,在摇瓶培养中CP III的滴度逐渐增加到32.5±0.5mg/L。然而,增加途径基因的拷贝数并不能持续提高CP III的合成。因此,将部分合成途径区室化到线粒体中,以评估其在提高CP III产量方面的有效性。随后,通过将线粒体区室化策略叠加到细胞质代谢工程菌株上,CP III滴度提高到64.3±1.9mg/L。此外,增加抗氧化途径基因以降低活性氧(ROS)水平有效地改善了工程菌株的生长,导致CP III滴度进一步提高到82.9±1.4mg/L。在5L生物反应器中进行补料分批发酵,CP III的滴度达到402.8±9.3mg/L。本研究为工程酵母用于微生物生产卟啉提供了新的视角。