Department of Electronics and Radio Engineering, Kyung Hee University , 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea.
ACS Appl Mater Interfaces. 2016 Nov 9;8(44):30165-30175. doi: 10.1021/acsami.6b09785. Epub 2016 Oct 27.
We report the creation of hybrid energy cells based on hierarchical nano/micro-architectured polydimethylsiloxane (HNMA-PDMS) films with multifunctionality to simultaneously harvest mechanical, solar, and wind energies. These films consist of nano/micro dual-scale architectures (i.e., nanonipples on inverted micropyramidal arrays) on the PDMS surface. The HNMA-PDMS is replicable by facile and cost-effective soft imprint lithography using a nanoporous anodic alumina oxide film formed on the micropyramidal-structured silicon substrate. The HNMA-PDMS film plays multifunctional roles as a triboelectric layer in nanogenerators and an antireflection layer for dye-sensitized solar cells (DSSCs), as well as a self-cleaning surface. This film is employed in triboelectric nanogenerator (TENG) devices, fabricated by laminating it on indium-tin oxide-coated polyethylene terephthalate (ITO/PET) as a bottom electrode. The large effective contact area that emerged from the densely packed hierarchical nano/micro-architectures of the PDMS film leads to the enhancement of TENG device performance. Moreover, the HNMA-PDMS/ITO/PET, with a high transmittance of >90%, also results in highly transparent TENG devices. By placing the HNMA-PDMS/ITO/PET, where the ITO/PET is coated with zinc oxide nanowires, as the top glass substrate of DSSCs, the device is able to add the functionality of TENG devices, thus creating a hybrid energy cell. The hybrid energy cell can successfully convert mechanical, solar, and wind energies into electricity, simultaneously or independently. To specify the device performance, the effects of external pushing frequency and load resistance on the output of TENG devices are also analyzed, including the photovoltaic performance of the hybrid energy cells.
我们报告了基于具有多功能性的分层纳米/微结构聚二甲基硅氧烷 (HNMA-PDMS) 薄膜的混合能源电池的创建,以同时收获机械、太阳能和风能。这些薄膜由 PDMS 表面上的纳米/微双尺度结构(即倒置微金字塔阵列上的纳米波纹)组成。HNMA-PDMS 可以通过使用在具有微金字塔结构的硅衬底上形成的纳米多孔阳极氧化铝膜通过简单且具有成本效益的软压印光刻进行复制。HNMA-PDMS 薄膜在纳米发电机中作为摩擦电层和染料敏化太阳能电池 (DSSC) 的抗反射层以及自清洁表面发挥多功能作用。该薄膜被用于通过将其层压在掺锡氧化铟 (ITO)/聚对苯二甲酸乙二醇酯 (PET) 上作为底电极来制造摩擦纳米发电机 (TENG) 器件。PDMS 薄膜的密集分层纳米/微结构产生的大有效接触面积提高了 TENG 器件的性能。此外,具有>90%高透光率的 HNMA-PDMS/ITO/PET 也导致高透明 TENG 器件。通过将具有氧化锌纳米线的 ITO/PET 涂覆的 HNMA-PDMS/ITO/PET 用作 DSSC 的顶部玻璃基板,该装置能够添加 TENG 装置的功能,从而创建混合能源电池。混合能源电池可以成功地将机械、太阳能和风能转化为电能,同时或独立地进行。为了指定设备性能,还分析了外部推动频率和负载电阻对 TENG 设备输出的影响,包括混合能源电池的光伏性能。