Suppr超能文献

TET 介导的 DNA 去甲基化通过调节 Leftynodal 信号控制原肠胚形成。

TET-mediated DNA demethylation controls gastrulation by regulating Lefty-Nodal signalling.

机构信息

State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Chinese Academy of Science, Shanghai 200031, China.

出版信息

Nature. 2016 Oct 27;538(7626):528-532. doi: 10.1038/nature20095. Epub 2016 Oct 19.

Abstract

Mammalian genomes undergo epigenetic modifications, including cytosine methylation by DNA methyltransferases (DNMTs). Oxidation of 5-methylcytosine by the Ten-eleven translocation (TET) family of dioxygenases can lead to demethylation. Although cytosine methylation has key roles in several processes such as genomic imprinting and X-chromosome inactivation, the functional significance of cytosine methylation and demethylation in mouse embryogenesis remains to be fully determined. Here we show that inactivation of all three Tet genes in mice leads to gastrulation phenotypes, including primitive streak patterning defects in association with impaired maturation of axial mesoderm and failed specification of paraxial mesoderm, mimicking phenotypes in embryos with gain-of-function Nodal signalling. Introduction of a single mutant allele of Nodal in the Tet mutant background partially restored patterning, suggesting that hyperactive Nodal signalling contributes to the gastrulation failure of Tet mutants. Increased Nodal signalling is probably due to diminished expression of the Lefty1 and Lefty2 genes, which encode inhibitors of Nodal signalling. Moreover, reduction in Lefty gene expression is linked to elevated DNA methylation, as both Lefty-Nodal signalling and normal morphogenesis are largely restored in Tet-deficient embryos when the Dnmt3a and Dnmt3b genes are disrupted. Additionally, a point mutation in Tet that specifically abolishes the dioxygenase activity causes similar morphological and molecular abnormalities as the null mutation. Taken together, our results show that TET-mediated oxidation of 5-methylcytosine modulates Lefty-Nodal signalling by promoting demethylation in opposition to methylation by DNMT3A and DNMT3B. These findings reveal a fundamental epigenetic mechanism featuring dynamic DNA methylation and demethylation crucial to regulation of key signalling pathways in early body plan formation.

摘要

哺乳动物基因组经历表观遗传修饰,包括 DNA 甲基转移酶 (DNMTs) 介导的胞嘧啶甲基化。Ten-eleven 易位 (TET) 家族双加氧酶氧化 5-甲基胞嘧啶可导致去甲基化。虽然胞嘧啶甲基化在基因组印迹和 X 染色体失活等多个过程中具有关键作用,但在小鼠胚胎发生中胞嘧啶甲基化和去甲基化的功能意义仍有待充分确定。在这里,我们表明,在小鼠中敲除所有三个 Tet 基因会导致原肠胚形成表型,包括与轴向中胚层成熟障碍相关的原始条纹图案缺陷以及轴旁中胚层的未能特化,模拟了具有功能获得性 Nodal 信号的胚胎表型。在 Tet 突变背景中引入单个突变等位基因的 Nodal 部分恢复了图案形成,表明过度活跃的 Nodal 信号导致 Tet 突变体的原肠胚形成失败。Nodal 信号的增加可能是由于编码 Nodal 信号抑制剂的 Leftyl1 和 Leftyl2 基因表达减少所致。此外,Lefty 基因表达的减少与 DNA 甲基化的增加有关,因为当 Dnmt3a 和 Dnmt3b 基因被破坏时,Lefty-Nodal 信号和正常形态发生在 Tet 缺陷胚胎中得到了很大程度的恢复。此外,Tet 的点突变特异性地消除了双加氧酶活性,导致类似于缺失突变的形态和分子异常。总之,我们的研究结果表明,TET 介导的 5-甲基胞嘧啶氧化通过促进去甲基化来调节 Leftyl-Nodal 信号,与 DNMT3A 和 DNMT3B 的甲基化相反。这些发现揭示了一种基本的表观遗传机制,其特征是动态 DNA 甲基化和去甲基化对于调节早期体节形成中的关键信号通路至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验