Barenghi C F, Sergeev Y A, Baggaley A W
Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
Joint Quantum Centre (JQC) Durham-Newcastle, School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
Sci Rep. 2016 Oct 20;6:35701. doi: 10.1038/srep35701.
Experiments and numerical simulations of turbulent He and He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics.
对超流氦(He)和超流氦 - B(He - B)湍流的实验及数值模拟表明,在大于量子涡旋平均间距的流体动力学长度尺度下,能谱遵循与普通流体均匀各向同性湍流中观测到的相同的5/3科尔莫戈罗夫定律。5/3定律的重要性在于它表明了从大涡旋到小涡旋存在理查森能量级串。然而,也有证据表明存在不具有科尔莫戈罗夫标度的量子湍流状态。这就引出了一些重要问题:为何在这种状态下科尔莫戈罗夫谱无法形成;没有能量级串的湍流的物理本质是什么;流体动力学模型能否解释超流氦湍流的异常行为。在这项工作中,我们描述了阻止热逆流中科尔莫戈罗夫标度形成的简单物理机制,并分析了在低温下通过注入涡环产生的量子湍流中准经典状态出现所需的条件。我们的模型证明了对量子湍流的流体动力学描述是合理的,并揭示了涡旋动力学的一个意外状态。