Suppr超能文献

不存在能量级串的湍流状态。

Regimes of turbulence without an energy cascade.

作者信息

Barenghi C F, Sergeev Y A, Baggaley A W

机构信息

Joint Quantum Centre (JQC) Durham-Newcastle, School of Mathematics and Statistics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

Joint Quantum Centre (JQC) Durham-Newcastle, School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

出版信息

Sci Rep. 2016 Oct 20;6:35701. doi: 10.1038/srep35701.

Abstract

Experiments and numerical simulations of turbulent He and He-B have established that, at hydrodynamic length scales larger than the average distance between quantum vortices, the energy spectrum obeys the same 5/3 Kolmogorov law which is observed in the homogeneous isotropic turbulence of ordinary fluids. The importance of the 5/3 law is that it points to the existence of a Richardson energy cascade from large eddies to small eddies. However, there is also evidence of quantum turbulent regimes without Kolmogorov scaling. This raises the important questions of why, in such regimes, the Kolmogorov spectrum fails to form, what is the physical nature of turbulence without energy cascade, and whether hydrodynamical models can account for the unusual behaviour of turbulent superfluid helium. In this work we describe simple physical mechanisms which prevent the formation of Kolmogorov scaling in the thermal counterflow, and analyze the conditions necessary for emergence of quasiclassical regime in quantum turbulence generated by injection of vortex rings at low temperatures. Our models justify the hydrodynamical description of quantum turbulence and shed light into an unexpected regime of vortex dynamics.

摘要

对超流氦(He)和超流氦 - B(He - B)湍流的实验及数值模拟表明,在大于量子涡旋平均间距的流体动力学长度尺度下,能谱遵循与普通流体均匀各向同性湍流中观测到的相同的5/3科尔莫戈罗夫定律。5/3定律的重要性在于它表明了从大涡旋到小涡旋存在理查森能量级串。然而,也有证据表明存在不具有科尔莫戈罗夫标度的量子湍流状态。这就引出了一些重要问题:为何在这种状态下科尔莫戈罗夫谱无法形成;没有能量级串的湍流的物理本质是什么;流体动力学模型能否解释超流氦湍流的异常行为。在这项工作中,我们描述了阻止热逆流中科尔莫戈罗夫标度形成的简单物理机制,并分析了在低温下通过注入涡环产生的量子湍流中准经典状态出现所需的条件。我们的模型证明了对量子湍流的流体动力学描述是合理的,并揭示了涡旋动力学的一个意外状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b140/5071764/a5826ad1c810/srep35701-f1.jpg

相似文献

1
Regimes of turbulence without an energy cascade.
Sci Rep. 2016 Oct 20;6:35701. doi: 10.1038/srep35701.
2
Mutual-friction-driven turbulent statistics in the hydrodynamic regime of superfluid ^{3}He-B.
Phys Rev E. 2019 Mar;99(3-1):033111. doi: 10.1103/PhysRevE.99.033111.
3
Andreev reflection, a tool to investigate vortex dynamics and quantum turbulence in 3He-B.
Proc Natl Acad Sci U S A. 2014 Mar 25;111 Suppl 1(Suppl 1):4659-66. doi: 10.1073/pnas.1312543110. Epub 2014 Mar 24.
4
Holographic vortex liquids and superfluid turbulence.
Science. 2013 Jul 26;341(6144):368-72. doi: 10.1126/science.1233529.
5
Inverse energy cascade in forced two-dimensional quantum turbulence.
Phys Rev Lett. 2013 Mar 8;110(10):104501. doi: 10.1103/PhysRevLett.110.104501. Epub 2013 Mar 4.
6
Universal Anomalous Diffusion of Quantized Vortices in Ultraquantum Turbulence.
Phys Rev Lett. 2022 Jul 8;129(2):025301. doi: 10.1103/PhysRevLett.129.025301.
7
Origin of the inverse energy cascade in two-dimensional quantum turbulence.
Phys Rev E. 2017 May;95(5-1):052144. doi: 10.1103/PhysRevE.95.052144. Epub 2017 May 30.
8
Observation of vortex-antivortex pairing in decaying 2D turbulence of a superfluid gas.
Sci Rep. 2017 Jul 4;7(1):4587. doi: 10.1038/s41598-017-04122-9.
9
Quantum turbulent velocity statistics and quasiclassical limit.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):067301. doi: 10.1103/PhysRevE.84.067301. Epub 2011 Dec 5.
10
Fluctuations and Correlations of Pure Quantum Turbulence in Superfluid 3He-B.
Phys Rev Lett. 2008 Aug 8;101(6):065302. doi: 10.1103/PhysRevLett.101.065302.

引用本文的文献

1
Knot spectrum of turbulence.
Sci Rep. 2019 Jul 22;9(1):10545. doi: 10.1038/s41598-019-47103-w.
2
Turbulence in protein folding: Vorticity, scaling and diffusion of probability flows.
PLoS One. 2017 Dec 5;12(12):e0188659. doi: 10.1371/journal.pone.0188659. eCollection 2017.

本文引用的文献

1
Dissipation of Quasiclassical Turbulence in Superfluid ^{4}He.
Phys Rev Lett. 2015 Oct 9;115(15):155303. doi: 10.1103/PhysRevLett.115.155303. Epub 2015 Oct 8.
2
Hot-wire anemometry for superfluid turbulent coflows.
Rev Sci Instrum. 2015 Feb;86(2):025007. doi: 10.1063/1.4913530.
3
Reconnections of quantized vortex rings in superfluid 4He at very low temperatures.
Phys Rev Lett. 2014 Sep 19;113(12):125302. doi: 10.1103/PhysRevLett.113.125302. Epub 2014 Sep 17.
4
Experimental, numerical, and analytical velocity spectra in turbulent quantum fluid.
Proc Natl Acad Sci U S A. 2014 Mar 25;111 Suppl 1(Suppl 1):4683-90. doi: 10.1073/pnas.1312548111. Epub 2014 Mar 24.
5
Introduction to quantum turbulence.
Proc Natl Acad Sci U S A. 2014 Mar 25;111 Suppl 1(Suppl 1):4647-52. doi: 10.1073/pnas.1400033111. Epub 2014 Mar 24.
6
Three-dimensional inverse energy transfer induced by vortex reconnections.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jan;89(1):013002. doi: 10.1103/PhysRevE.89.013002. Epub 2014 Jan 6.
7
Vortex-density fluctuations, energy spectra, and vortical regions in superfluid turbulence.
Phys Rev Lett. 2012 Nov 16;109(20):205304. doi: 10.1103/PhysRevLett.109.205304. Epub 2012 Nov 14.
8
Quantum turbulent velocity statistics and quasiclassical limit.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Dec;84(6 Pt 2):067301. doi: 10.1103/PhysRevE.84.067301. Epub 2011 Dec 5.
9
Quantum and quasiclassical types of superfluid turbulence.
Phys Rev Lett. 2008 Jun 20;100(24):245301. doi: 10.1103/PhysRevLett.100.245301. Epub 2008 Jun 17.
10
Dissipation of quantum turbulence in the zero temperature limit.
Phys Rev Lett. 2007 Dec 31;99(26):265302. doi: 10.1103/PhysRevLett.99.265302. Epub 2007 Dec 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验