Suppr超能文献

动态对比增强磁共振成像用于前列腺切除术后残余或复发病灶的自动检测。

Dynamic contrast-enhanced MRI for automatic detection of foci of residual or recurrent disease after prostatectomy.

作者信息

Parra N Andres, Orman Amber, Padgett Kyle, Casillas Victor, Punnen Sanoj, Abramowitz Matthew, Pollack Alan, Stoyanova Radka

机构信息

Department of Radiation Oncology, University of Miami Miller School of Medicine, 1121 NW 14th St, 33136, Miami, FL, USA.

Department of Radiology, University of Miami Miller School of Medicine, Miami, FL, USA.

出版信息

Strahlenther Onkol. 2017 Jan;193(1):13-21. doi: 10.1007/s00066-016-1055-z. Epub 2016 Oct 19.

Abstract

PURPOSE

This study aimed to develop an automated procedure for identifying suspicious foci of residual/recurrent disease in the prostate bed using dynamic contrast-enhanced-MRI (DCE-MRI) in prostate cancer patients after prostatectomy.

MATERIALS AND METHODS

Data of 22 patients presenting for salvage radiotherapy (RT) with an identified gross tumor volume (GTV) in the prostate bed were analyzed retrospectively. An unsupervised pattern recognition method was used to analyze DCE-MRI curves from the prostate bed. Data were represented as a product of a number of signal-vs.-time patterns and their weights. The temporal pattern, characterized by fast wash-in and gradual wash-out, was considered the "tumor" pattern. The corresponding weights were thresholded based on the number (1, 1.5, 2, 2.5) of standard deviations away from the mean, denoted as DCE1.0, …, DCE2.5, and displayed on the T2-weighted MRI. The resultant four volumes were compared with the GTV and maximum pre-RT prostate-specific antigen (PSA) level. Pharmacokinetic modeling was also carried out.

RESULTS

Principal component analysis determined 2-4 significant patterns in patients' DCE-MRI. Analysis and display of the identified suspicious foci was performed in commercial software (MIM Corporation, Cleveland, OH, USA). In general, DCE1.0/DCE1.5 highlighted larger areas than GTV. DCE2.0 and GTV were significantly correlated (r = 0.60, p < 0.05). DCE2.0/DCA2.5 were also significantly correlated with PSA (r = 0.52, 0.67, p < 0.05). K for DCE2.5 was statistically higher than the GTV's K (p < 0.05), indicating that the automatic volume better captures areas of malignancy.

CONCLUSION

A software tool was developed for identification and visualization of the suspicious foci in DCE-MRI from post-prostatectomy patients and was integrated into the treatment planning system.

摘要

目的

本研究旨在开发一种自动化程序,用于在前列腺癌患者前列腺切除术后,利用动态对比增强磁共振成像(DCE-MRI)识别前列腺床残余/复发病灶的可疑部位。

材料与方法

回顾性分析22例因挽救性放疗(RT)就诊且前列腺床已确定大体肿瘤体积(GTV)的患者的数据。采用无监督模式识别方法分析前列腺床的DCE-MRI曲线。数据表示为多个信号-时间模式及其权重的乘积。以快速流入和逐渐流出为特征的时间模式被视为“肿瘤”模式。根据偏离均值的标准差数量(1、1.5、2、2.5)对相应权重进行阈值处理,分别记为DCE1.0、…、DCE2.5,并显示在T2加权MRI上。将得到的四个体积与GTV和放疗前最大前列腺特异性抗原(PSA)水平进行比较。还进行了药代动力学建模。

结果

主成分分析确定了患者DCE-MRI中的2-4个显著模式。在商业软件(美国俄亥俄州克利夫兰市的MIM公司)中对识别出的可疑部位进行分析和显示。一般来说,DCE1.0/DCE1.5突出显示的区域比GTV大。DCE2.0与GTV显著相关(r = 0.60,p < 0.05)。DCE2.0/DCA2.5也与PSA显著相关(r = 0.52,0.67,p < 0.05)。DCE2.5的K在统计学上高于GTV的K(p < 0.05),表明自动体积能更好地捕捉恶性区域。

结论

开发了一种软件工具,用于识别和可视化前列腺切除术后患者DCE-MRI中的可疑部位,并将其集成到治疗计划系统中。

相似文献

1
Dynamic contrast-enhanced MRI for automatic detection of foci of residual or recurrent disease after prostatectomy.
Strahlenther Onkol. 2017 Jan;193(1):13-21. doi: 10.1007/s00066-016-1055-z. Epub 2016 Oct 19.
7
Magnetic resonance imaging in postprostatectomy radiotherapy planning.
Int J Radiat Oncol Biol Phys. 2012 Feb 1;82(2):911-8. doi: 10.1016/j.ijrobp.2010.11.004. Epub 2011 Mar 21.
8
Focal salvage guided by T2-weighted and dynamic contrast-enhanced magnetic resonance imaging for prostate cancer recurrences.
Int J Radiat Oncol Biol Phys. 2010 Mar 1;76(3):741-6. doi: 10.1016/j.ijrobp.2009.02.055. Epub 2009 Oct 3.
9
Evaluation of the prostate bed for local recurrence after radical prostatectomy using endorectal magnetic resonance imaging.
Int J Radiat Oncol Biol Phys. 2013 Feb 1;85(2):378-84. doi: 10.1016/j.ijrobp.2012.05.015. Epub 2012 Jun 18.

引用本文的文献

1
The role of MRI in prostate cancer: current and future directions.
MAGMA. 2022 Aug;35(4):503-521. doi: 10.1007/s10334-022-01006-6. Epub 2022 Mar 16.
3
Automatic Detection and Quantitative DCE-MRI Scoring of Prostate Cancer Aggressiveness.
Front Oncol. 2017 Nov 10;7:259. doi: 10.3389/fonc.2017.00259. eCollection 2017.

本文引用的文献

3
EAU guidelines on prostate cancer. Part II: Treatment of advanced, relapsing, and castration-resistant prostate cancer.
Eur Urol. 2014 Feb;65(2):467-79. doi: 10.1016/j.eururo.2013.11.002. Epub 2013 Nov 12.
4
EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013.
Eur Urol. 2014 Jan;65(1):124-37. doi: 10.1016/j.eururo.2013.09.046. Epub 2013 Oct 6.
7
Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis.
Clin Nucl Med. 2013 May;38(5):305-14. doi: 10.1097/RLU.0b013e3182867f3c.
8
Mapping Tumor Hypoxia In Vivo Using Pattern Recognition of Dynamic Contrast-enhanced MRI Data.
Transl Oncol. 2012 Dec;5(6):437-47. doi: 10.1593/tlo.12319. Epub 2012 Dec 1.
10
Magnetic resonance imaging in postprostatectomy radiotherapy planning.
Int J Radiat Oncol Biol Phys. 2012 Feb 1;82(2):911-8. doi: 10.1016/j.ijrobp.2010.11.004. Epub 2011 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验