Sawicki Lisa A, Kloxin April M
Department of Chemical and Biomolecular Engineering, University of Delaware.
Department of Chemical and Biomolecular Engineering, University of Delaware; Department of Materials Science and Engineering, University of Delaware;
J Vis Exp. 2016 Sep 29(115):54462. doi: 10.3791/54462.
Click chemistries have been investigated for use in numerous biomaterials applications, including drug delivery, tissue engineering, and cell culture. In particular, light-mediated click reactions, such as photoinitiated thiol-ene and thiol-yne reactions, afford spatiotemporal control over material properties and allow the design of systems with a high degree of user-directed property control. Fabrication and modification of hydrogel-based biomaterials using the precision afforded by light and the versatility offered by these thiol-X photoclick chemistries are of growing interest, particularly for the culture of cells within well-defined, biomimetic microenvironments. Here, we describe methods for the photoencapsulation of cells and subsequent photopatterning of biochemical cues within hydrogel matrices using versatile and modular building blocks polymerized by a thiol-ene photoclick reaction. Specifically, an approach is presented for constructing hydrogels from allyloxycarbonyl (Alloc)-functionalized peptide crosslinks and pendant peptide moieties and thiol-functionalized poly(ethylene glycol) (PEG) that rapidly polymerize in the presence of lithium acylphosphinate photoinitiator and cytocompatible doses of long wavelength ultraviolet (UV) light. Facile techniques to visualize photopatterning and quantify the concentration of peptides added are described. Additionally, methods are established for encapsulating cells, specifically human mesenchymal stem cells, and determining their viability and activity. While the formation and initial patterning of thiol-alloc hydrogels are shown here, these techniques broadly may be applied to a number of other light and radical-initiated material systems (e.g., thiol-norbornene, thiol-acrylate) to generate patterned substrates.
点击化学已被研究用于众多生物材料应用中,包括药物递送、组织工程和细胞培养。特别是光介导的点击反应,如光引发的硫醇-烯和硫醇-炔反应,可对材料性能进行时空控制,并允许设计具有高度用户导向性能控制的系统。利用光提供的精度和这些硫醇-X光点击化学提供的多功能性来制备和修饰水凝胶基生物材料越来越受到关注,特别是对于在明确的、仿生微环境中培养细胞而言。在这里,我们描述了使用通过硫醇-烯光点击反应聚合的通用和模块化构建块在水凝胶基质中对细胞进行光包封以及随后对生化线索进行光图案化的方法。具体而言,提出了一种由烯丙氧基羰基(Alloc)功能化的肽交联剂和侧链肽部分以及硫醇功能化的聚乙二醇(PEG)构建水凝胶的方法,它们在酰基次膦酸锂光引发剂和细胞相容剂量的长波长紫外线(UV)存在下快速聚合。描述了用于可视化光图案化和量化添加肽浓度的简便技术。此外,还建立了封装细胞(特别是人间充质干细胞)并确定其活力和活性的方法。虽然这里展示了硫醇-Alloc水凝胶的形成和初始图案化,但这些技术广泛地可应用于许多其他光和自由基引发的材料系统(例如硫醇-降冰片烯、硫醇-丙烯酸酯)以生成图案化底物。