Suppr超能文献

通过胶体纳米球光刻技术制备的用于超薄铜铟镓硒太阳能电池光电增强的可控介电纳米网。

Well-Controlled Dielectric Nanomeshes by Colloidal Nanosphere Lithography for Optoelectronic Enhancement of Ultrathin Cu(In,Ga)Se Solar Cells.

作者信息

Yin Guanchao, Song Min, Duan Shengkai, Manley Phillip, Greiner Dieter, Kaufmann Christian A, Schmid Martina

机构信息

Nanooptische Konzepte für die PV, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , Hahn-Meitner Platz 1, 14109 Berlin, Germany.

Freie Universität Berlin , Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany.

出版信息

ACS Appl Mater Interfaces. 2016 Nov 23;8(46):31646-31652. doi: 10.1021/acsami.6b10135. Epub 2016 Nov 9.

Abstract

Ultrathin Cu(In,Ga)Se (CIGSe) solar cells pose challenges of incomplete absorption and back contact recombination. In this work, we applied the simple collodial nanosphere lithography and fabricated 2D SiO nanomeshes (NMs), which simultaneously benefit ultrathin CIGSe solar cells electrically and optically. Electrically, the NMs are capable of passivating the back contact recombination and increasing the minimum bandgap of absorbers. Optically, the parasitic absorption in Mo as a main optical loss is reduced. Consequently, the SiO NMs give rise to an increase of 3.5 mA/cm in short circuit current density (J) and of 57 mV in open circuit voltage increase (V), leading to an absolute efficiency enhancement as high as 2.6% (relatively 30%) for CIGSe solar cells with an absorber thickness of only 370 nm and a steep back Ga/[Ga + In] grading.

摘要

超薄铜铟镓硒(CIGSe)太阳能电池面临着吸收不完全和背接触复合的挑战。在这项工作中,我们应用了简单的胶体纳米球光刻技术,制备了二维二氧化硅纳米网(NMs),这同时在电学和光学方面有利于超薄CIGSe太阳能电池。在电学上,纳米网能够钝化背接触复合并增加吸收体的最小带隙。在光学上,作为主要光学损耗的钼中的寄生吸收得以降低。因此,二氧化硅纳米网使短路电流密度(J)增加了3.5 mA/cm²,开路电压增加(V)增加了57 mV,对于吸收体厚度仅为370 nm且具有陡峭的背向Ga/[Ga + In]梯度的CIGSe太阳能电池,绝对效率提高高达2.6%(相对提高30%)。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验