Suppr超能文献

在与纳米结构 NiP 助催化剂薄膜界面的硅光电阴极上实现高效光电化学析氢。

Efficient Photoelectrochemical Hydrogen Evolution on Silicon Photocathodes Interfaced with Nanostructured NiP Cocatalyst Films.

机构信息

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University , Suzhou 215123, China.

Department of Physics, Jiangsu Key Laboratory of Thin Films, Soochow University , Suzhou 215006, China.

出版信息

ACS Appl Mater Interfaces. 2016 Nov 16;8(45):31025-31031. doi: 10.1021/acsami.6b11197. Epub 2016 Nov 1.

Abstract

Increasing attention has now been focused on the photoelectrochemical (PEC) hydrogen evolution as a promising route to transforming solar energy into chemical fuels. Silicon is one of the most studied PEC electrode materials, but its performance is still limited by its inherent PEC instability and electrochemical inertness toward water splitting. To achieve significant PEC activities, silicon-based photoelectrodes usually have to be coupled with proper cocatalysts, and thus, the formed semiconductor-cocatalyst interface presents a critical structural parameter in the rational design of efficient PEC devices. In this study, we directly grow nanostructured pyrite-phase nickel phosphide (NiP) cocatalyst films on textured pn-Si photocathodes via on-surface reaction at high temperatures. The areal loading of the cocatalyst film can be tailored to achieve an optimal balance between its optical transparency and electrocatalytic activity. As a result, our pn-Si/Ti/NiP photocathodes demonstrate a great PEC onset potential of 0.41 V versus reversible hydrogen electrode (RHE), a decent photocurrent density of ∼12 mA/cm at the thermodynamic potential of hydrogen evolution, and an impressive operation durability for at least 6 h in 0.5 M HSO. Comparable PEC performance is also observed in 1 M potassium borate buffer (pH = 9.5) using this device.

摘要

现在越来越多的人关注光电化学(PEC)析氢作为将太阳能转化为化学燃料的一种很有前途的途径。硅是研究最多的 PEC 电极材料之一,但由于其固有的 PEC 不稳定性和对水分解的电化学惰性,其性能仍然受到限制。为了获得显著的 PEC 活性,硅基光电阳极通常必须与适当的助催化剂结合,因此,半导体-助催化剂界面的形成是合理设计高效 PEC 器件的关键结构参数之一。在本研究中,我们通过高温表面反应直接在织构化 pn-Si 光阴极上生长纳米结构的黄铁矿相镍磷化物(NiP)助催化剂薄膜。助催化剂薄膜的面载量可以进行调整,以实现其光学透明度和电催化活性之间的最佳平衡。结果,我们的 pn-Si/Ti/NiP 光阴极表现出 0.41 V 相对于可逆氢电极(RHE)的优异起始电位,在热力学析氢电势下约 12 mA/cm 的可观光电流密度,以及在 0.5 M HSO 中至少 6 小时的出色操作耐久性。使用该器件在 1 M 硼酸钾缓冲液(pH = 9.5)中也观察到了相当的 PEC 性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验