Ambrosio B, Aziz-Alaoui M A
UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, Normandie Univ, 76600, Le Havre, France.
Acta Biotheor. 2016 Dec;64(4):311-325. doi: 10.1007/s10441-016-9294-z. Epub 2016 Oct 21.
This article is devoted to the characterization of the basin of attraction of pattern solutions for some slow-fast reaction-diffusion systems with a symmetric property and an underlying oscillatory reaction part. We characterize some subsets of initial conditions that prevent the dynamical system to evolve asymptotically toward solutions which are homogeneous in space. We also perform numerical simulations that illustrate theoretical results and give rise to symmetric and non-symmetric pattern solutions. We obtain these last solutions by choosing particular random initial conditions.
本文致力于刻画某些具有对称性质和潜在振荡反应部分的快慢反应扩散系统模式解的吸引域。我们刻画了一些初始条件的子集,这些子集可防止动力系统渐近地演化为空间均匀的解。我们还进行了数值模拟,这些模拟阐明了理论结果,并产生了对称和非对称模式解。我们通过选择特定的随机初始条件获得了这些最后的解。