Suppr超能文献

快慢反应扩散系统中具有模式形成的解的吸引子盆

Basin of Attraction of Solutions with Pattern Formation in Slow-Fast Reaction-Diffusion Systems.

作者信息

Ambrosio B, Aziz-Alaoui M A

机构信息

UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, Normandie Univ, 76600, Le Havre, France.

出版信息

Acta Biotheor. 2016 Dec;64(4):311-325. doi: 10.1007/s10441-016-9294-z. Epub 2016 Oct 21.

Abstract

This article is devoted to the characterization of the basin of attraction of pattern solutions for some slow-fast reaction-diffusion systems with a symmetric property and an underlying oscillatory reaction part. We characterize some subsets of initial conditions that prevent the dynamical system to evolve asymptotically toward solutions which are homogeneous in space. We also perform numerical simulations that illustrate theoretical results and give rise to symmetric and non-symmetric pattern solutions. We obtain these last solutions by choosing particular random initial conditions.

摘要

本文致力于刻画某些具有对称性质和潜在振荡反应部分的快慢反应扩散系统模式解的吸引域。我们刻画了一些初始条件的子集,这些子集可防止动力系统渐近地演化为空间均匀的解。我们还进行了数值模拟,这些模拟阐明了理论结果,并产生了对称和非对称模式解。我们通过选择特定的随机初始条件获得了这些最后的解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验