Suppr超能文献

脊椎动物基因组中胞嘧啶甲基化与CpG二核苷酸的命运

Cytosine methylation and the fate of CpG dinucleotides in vertebrate genomes.

作者信息

Cooper D N, Krawczak M

机构信息

Thrombosis Research Unit, King's College School of Medicine and Dentistry, University of London, UK.

出版信息

Hum Genet. 1989 Sep;83(2):181-8. doi: 10.1007/BF00286715.

Abstract

The dinucleotide CpG is a "hotspot" for mutation in the human genome as a result of (1) the modification of the 5' cytosine by cellular DNA methyltransferases and (2) the consequent high frequency of spontaneous deamination of 5-methyl cytosine (5mC) to thymidine. DNA methylation thus contributes significantly, albeit indirectly, to the incidence of human genetic disease. We have attempted to estimate for the first time the in vivo rate of deamination of 5mC from the measured rate of 5mC deamination in vitro and the known error frequency of the cellular G/T mismatch-repair system. The accuracy and utility of this estimate (md) was then assessed by comparison with clinical data, and an improved estimate of md (1.66 X 10(-16) s-1) was derived. Comparison of the CpG mutation rates exhibited by globin gene and pseudogene sequences from human, chimpanzee and macaque provided further estimates of md, all of which were consistent with the first. Use of this value in a mathematical model then permitted the estimation of the length of time required to produce the level of "CpG suppression" currently found in the "bulk DNA" of vertebrate genomes. This time span, approximately 450 million years, corresponds closely to the estimated time since the emergence and adaptive radiation of the vertebrates and thus coincides with the probable advent of heavily methylated genomes. An accurate estimate of the 5mC deamination rate is important not only for clinical medicine but also for studies of gene evolution. Our data suggest both that patterns of vertebrate gene methylation may be comparatively stable over relatively long periods of evolutionary time, and that the rate of CpG deamination can, under certain limited conditions, serve as a "molecular clock".

摘要

由于以下两个原因,二核苷酸CpG是人类基因组中的一个突变“热点”:(1)细胞DNA甲基转移酶对5' 胞嘧啶进行修饰;(2)随后5-甲基胞嘧啶(5mC)自发脱氨基生成胸腺嘧啶的频率很高。因此,DNA甲基化尽管是间接的,但对人类遗传疾病的发生率有重大影响。我们首次尝试根据体外测量的5mC脱氨基速率和细胞G/T错配修复系统已知的错误频率来估算体内5mC的脱氨基速率。然后通过与临床数据比较来评估这个估算值(md)的准确性和实用性,得出了一个改进后的md估算值(1.66×10⁻¹⁶ s⁻¹)。对人类、黑猩猩和猕猴的珠蛋白基因及假基因序列所显示的CpG突变率进行比较,进一步估算了md,所有这些估算都与第一个估算结果一致。在一个数学模型中使用这个值,进而可以估算出产生目前在脊椎动物基因组“总体DNA”中发现的“CpG抑制”水平所需的时间长度。这个时间跨度约为4.5亿年,与脊椎动物出现和适应性辐射以来的估计时间非常接近,因此与高度甲基化基因组可能出现的时间相吻合。准确估算5mC脱氨基速率不仅对临床医学很重要,对基因进化研究也很重要。我们的数据表明,脊椎动物基因甲基化模式在相对较长的进化时间内可能相对稳定,而且在某些有限条件下,CpG脱氨基速率可以作为一个“分子钟”。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验