Suppr超能文献

机器人引导的抗体结合位点的 QM/MM 驱动成熟化。

Robotic QM/MM-driven maturation of antibody combining sites.

机构信息

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ulitsa Miklukho-Maklaya 16/10, 117997 Moscow V-437, Russian Federation.

Lomonosov Moscow State University, Moscow 119991, Russian Federation.

出版信息

Sci Adv. 2016 Oct 19;2(10):e1501695. doi: 10.1126/sciadv.1501695. eCollection 2016 Oct.

Abstract

In vitro selection of antibodies from large repertoires of immunoglobulin (Ig) combining sites using combinatorial libraries is a powerful tool, with great potential for generating in vivo scavengers for toxins. However, addition of a maturation function is necessary to enable these selected antibodies to more closely mimic the full mammalian immune response. We approached this goal using quantum mechanics/molecular mechanics (QM/MM) calculations to achieve maturation in silico. We preselected A17, an Ig template, from a naïve library for its ability to disarm a toxic pesticide related to organophosphorus nerve agents. Virtual screening of 167,538 robotically generated mutants identified an optimum single point mutation, which experimentally boosted wild-type Ig scavenger performance by 170-fold. We validated the QM/MM predictions via kinetic analysis and crystal structures of mutant apo-A17 and covalently modified Ig, thereby identifying the displacement of one water molecule by an arginine as delivering this catalysis.

摘要

利用组合文库从大容量免疫球蛋白 (Ig) 结合位点库中体外选择抗体是一种强大的工具,具有生成用于毒素的体内清除剂的巨大潜力。然而,需要添加成熟功能,以使这些选择的抗体更接近模拟完整的哺乳动物免疫反应。我们使用量子力学/分子力学 (QM/MM) 计算来达到这一目标,从而在计算机中实现成熟。我们从一个幼稚的文库中预先选择了 A17,因为它能够解除与有机磷神经毒剂有关的有毒杀虫剂。对 167,538 个机器人生成的突变体进行虚拟筛选,确定了一个最佳的单点突变,该突变实验将野生型 Ig 清除剂的性能提高了 170 倍。我们通过突变体 apo-A17 和共价修饰 Ig 的动力学分析和晶体结构验证了 QM/MM 预测,从而确定了一个精氨酸取代一个水分子,从而提供了这种催化作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f648/5072179/c51792226658/1501695-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验