Suppr超能文献

快速准确的单克隆抗体文库的计算溶解度筛选。

Rapid and accurate in silico solubility screening of a monoclonal antibody library.

机构信息

Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.

Biopharmaceutical Development, Medimmune Ltd, Granta Park, Cambridge, CB21 6GH, UK.

出版信息

Sci Rep. 2017 Aug 15;7(1):8200. doi: 10.1038/s41598-017-07800-w.

Abstract

Antibodies represent essential tools in research and diagnostics and are rapidly growing in importance as therapeutics. Commonly used methods to obtain novel antibodies typically yield several candidates capable of engaging a given target. The development steps that follow, however, are usually performed with only one or few candidates since they can be resource demanding, thereby increasing the risk of failure of the overall antibody discovery program. In particular, insufficient solubility, which may lead to aggregation under typical storage conditions, often hinders the ability of a candidate antibody to be developed and manufactured. Here we show that the selection of soluble lead antibodies from an initial library screening can be greatly facilitated by a fast computational prediction of solubility that requires only the amino acid sequence as input. We quantitatively validate this approach on a panel of nine distinct monoclonal antibodies targeting nerve growth factor (NGF), for which we compare the predicted and measured solubilities finding a very close match, and we further benchmark our predictions with published experimental data on aggregation hotspots and solubility of mutational variants of one of these antibodies.

摘要

抗体是研究和诊断中的重要工具,随着治疗方法的不断发展,其重要性也日益增加。通常用于获得新型抗体的方法通常会产生几个能够与特定靶标结合的候选物。然而,接下来的开发步骤通常只使用一个或几个候选物,因为它们可能需要大量资源,从而增加了整个抗体发现计划失败的风险。特别是,候选抗体的溶解度不足(这可能导致在典型储存条件下聚集),常常会阻碍候选抗体的开发和制造。在这里,我们展示了仅通过对所需输入为氨基酸序列的快速计算预测溶解度,就可以极大地促进从初始文库筛选中选择可溶性先导抗体。我们使用针对神经生长因子(NGF)的九个不同单克隆抗体的面板对该方法进行了定量验证,发现预测的和测量的溶解度非常匹配,并且我们使用该抗体的突变变体的聚集热点和溶解度的已发表实验数据进一步对我们的预测进行了基准测试。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6930/5558012/6b8cd458f601/41598_2017_7800_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验