von Cube Maja, Schumacher Martin, Palomar-Martinez Mercedes, Olaechea-Astigarraga Pedro, Alvarez-Lerma Francisco, Wolkewitz Martin
Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Germany.
Freiburg Center of Data Analysis and Modelling, Albert-Ludwigs University Freiburg, Freiburg., Germany.
Stat Med. 2017 Feb 10;36(3):481-495. doi: 10.1002/sim.7146. Epub 2016 Oct 24.
Analysing the determinants and consequences of hospital-acquired infections involves the evaluation of large cohorts. Infected patients in the cohort are often rare for specific pathogens, because most of the patients admitted to the hospital are discharged or die without such an infection. Death and discharge are competing events to acquiring an infection, because these individuals are no longer at risk of getting a hospital-acquired infection. Therefore, the data is best analysed with an extended survival model - the extended illness-death model. A common problem in cohort studies is the costly collection of covariate values. In order to provide efficient use of data from infected as well as uninfected patients, we propose a tailored case-cohort approach for the extended illness-death model. The basic idea of the case-cohort design is to only use a random sample of the full cohort, referred to as subcohort, and all cases, namely the infected patients. Thus, covariate values are only obtained for a small part of the full cohort. The method is based on existing and established methods and is used to perform regression analysis in adapted Cox proportional hazards models. We propose estimation of all cause-specific cumulative hazards and transition probabilities in an extended illness-death model based on case-cohort sampling. As an example, we apply the methodology to infection with a specific pathogen using a large cohort from Spanish hospital data. The obtained results of the case-cohort design are compared with the results in the full cohort to investigate the performance of the proposed method. Copyright © 2016 John Wiley & Sons, Ltd.
分析医院获得性感染的决定因素和后果需要对大量队列进行评估。队列中的感染患者对于特定病原体来说往往很少见,因为大多数入院患者在没有发生此类感染的情况下就出院或死亡了。死亡和出院是与感染相竞争的事件,因为这些个体不再有发生医院获得性感染的风险。因此,最好使用扩展生存模型——扩展疾病-死亡模型来分析数据。队列研究中的一个常见问题是协变量值的收集成本高昂。为了有效利用感染患者和未感染患者的数据,我们针对扩展疾病-死亡模型提出了一种量身定制的病例-队列方法。病例-队列设计的基本思想是仅使用整个队列的一个随机样本,即子队列,以及所有病例,即感染患者。这样,协变量值仅针对整个队列的一小部分获取。该方法基于现有的成熟方法,并用于在适配的Cox比例风险模型中进行回归分析。我们建议在基于病例-队列抽样的扩展疾病-死亡模型中估计所有病因特异性累积风险和转移概率。作为一个例子,我们使用来自西班牙医院数据的一个大型队列,将该方法应用于特定病原体的感染。将病例-队列设计获得的结果与整个队列的结果进行比较,以研究所提出方法的性能。版权所有© 2016约翰·威利父子有限公司。