von Cube Maja, Schumacher Martin, Wolkewitz Martin
Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center - University of Freiburg, Stefan-Meier Str. 26, Freiburg, 79104, Germany.
Freiburg Center of Data Analysis and Modelling, University of Freiburg, Eckerstr. 1, Freiburg, 79104, Germany.
BMC Med Res Methodol. 2017 Jul 20;17(1):111. doi: 10.1186/s12874-017-0379-4.
The extended illness-death model is a useful tool to study the risks and consequences of hospital-acquired infections (HAIs). The statistical quantities of interest are the transition-specific hazard rates and the transition probabilities as well as attributable mortality (AM) and the population-attributable fraction (PAF). In the most general case calculation of these expressions is mathematically complex.
When assuming time-constant hazards calculation of the quantities of interest is facilitated. In this situation the transition probabilities can be expressed in closed mathematical forms. The estimators for AM and PAF can be easily derived from these forms.
In this paper, we show how to explicitly calculate all the transition probabilities of an extended-illness model with constant hazards. Using a parametric model to estimate the time-constant transition specific hazard rates of a data example, the transition probabilities, AM and PAF can be directly calculated. With a publicly available data example, we show how the approach provides first insights into principle time-dynamics and data structure.
Assuming constant hazards facilitates the understanding of multi-state processes. Even in a non-constant hazards setting, the approach is a helpful first step for a comprehensive investigation of complex data.
扩展疾病-死亡模型是研究医院获得性感染(HAIs)风险和后果的有用工具。感兴趣的统计量包括特定转移风险率、转移概率以及归因死亡率(AM)和人群归因分数(PAF)。在最一般的情况下,这些表达式的计算在数学上很复杂。
当假设风险随时间恒定不变时,有助于计算感兴趣的量。在这种情况下,转移概率可以用封闭的数学形式表示。AM和PAF的估计量可以很容易地从这些形式中推导出来。
在本文中,我们展示了如何明确计算具有恒定风险的扩展疾病模型的所有转移概率。使用参数模型估计一个数据示例的时间恒定转移特定风险率,可以直接计算转移概率、AM和PAF。通过一个公开可用的数据示例,我们展示了该方法如何提供对主要时间动态和数据结构的初步见解。
假设风险恒定有助于理解多状态过程。即使在风险不恒定的情况下,该方法也是全面研究复杂数据的有益第一步。