Instituto Politecnico Nacional, CITEDI, Avenida IPN N 1310, Nueva Tijuana, Tijuana, BC 22435, Mexico. email:
Math Biosci Eng. 2016 Oct 1;13(5):1059-1075. doi: 10.3934/mbe.2016030.
Understanding the global interaction dynamics between tumor and the immune system plays a key role in the advancement of cancer therapy. Bunimovich-Mendrazitsky et al. (2015) developed a mathematical model for the study of the immune system response to combined therapy for bladder cancer with Bacillus Calmette-Guérin (BCG) and interleukin-2 (IL-2) . We utilized a mathematical approach for bladder cancer treatment model for derivation of ultimate upper and lower bounds and proving dissipativity property in the sense of Levinson. Furthermore, tumor clearance conditions for BCG treatment of bladder cancer are presented. Our method is based on localization of compact invariant sets and may be exploited for a prediction of the cells populations dynamics involved into the model.
理解肿瘤与免疫系统之间的全球相互作用动态在癌症治疗的进展中起着关键作用。Bunimovich-Mendrazitsky 等人(2015 年)开发了一个数学模型,用于研究针对膀胱癌的卡介苗(BCG)和白细胞介素-2(IL-2)联合治疗的免疫系统反应。我们利用一种数学方法对膀胱癌治疗模型进行推导,得出了最终的上下界,并证明了在 Levinson 意义下的耗散性。此外,还提出了膀胱癌 BCG 治疗的肿瘤清除条件。我们的方法基于紧不变集的定位,可以用于预测模型中涉及的细胞群体动力学。